其他
桥牌中的概率问题
算法数学俱乐部
日期:2020年01月26日
正文共:3285字0图
预计阅读时间:9分钟
来源:航天爱好者
桥牌是一种极具魅力与技术的牌类游戏,同时具有科学性。概率在桥牌中有着极其广泛和重要的作用,深刻影响着牌手的策略,甚至能够决定成败。其中,最基本也最关键的,就是对手各花色的牌型分布问题。依据概率理论分析,我们能够得到普遍情况下牌型分布的规律,而这些规律也在世界牌手的反复实践中得到了验证。可以说,概率成就了桥牌。而我们同样可以认为,桥牌也是概率在生活中得到发扬和应用的明证。
①2-0分布对应的情况是第2张牌也在第1张牌所在的一家,一共有12种可能,其概率为12/25; ②1-1分布对应的情况是第2张牌在另一家,一共有13种可能,其概率为13/25. 可见1-1分布的概率比2-2分布大。
①2-0分布一共有2种情况(根据独立事件组合理论,下同),各自对应概率13/26 * 12/25 = 0.24, 总概率为 2*0.24=0.48; ②1-1分布一共也有2种情况,各自对应概率13/26* 13/25 = 0.26, 总概率为 2*0.26=0.52.
①3-0分布一共有2种情况,各自对应概率13/26* 12/25 * 11/24 = 0.11, 总概率为 2*0.11=0.22; ②2-1分布一共有6种情况,各自对应概率13/26* 13/25 * 12/24 = 0.13, 总概率为 6*0.13=0.78.
①4-0分布一共有2种情况,各自对应概率13/26* 12/25 * 11/24 * 10/23 = 0.0478, 总概率为 2*0.0478=0.096; ②3-1分布一共有8种情况,各自对应概率13/26* 13/25 * 12/24 * 11/23 = 0.0622, 总概率为 8*0.0622=0.497; ③2-2分布一共有6种情况,各自对应概率13/26* 13/25 * 12/24 * 12/23 = 0.0678,总概率为 6*0.0678=0.407.
①5-0分布一共有2种情况,各自对应概率13/26* 12/25 * 11/24 * 10/23 * 9/22 = 0.0196, 总概率为2*0.0196=0.039; ②4-1分布一共有10种情况,各自对应概率13/26* 13/25 * 12/24 * 11/23 *10/22 = 0.0283, 总概率为 10*0.0283=0.283; ③3-2分布一共有20种情况,各自对应概率13/26* 13/25 * 12/24 * 12/23 * 11/22 = 0.0339,总概率为20*0.0229=0.678.
①6-0分布一共有2种情况,各自对应概率13/26* 12/25 * 11/24 * 10/23 * 9/22 * 8/21 = 0.00745, 总概率为2*0.00745=0.015; ②5-1分布一共有12种情况,各自对应概率13/26* 13/25 * 12/24 * 11/23 *10/22 * 9/21 = 0.0121, 总概率为12*0.0121=0.145; ③4-2分布一共有30种情况,各自对应概率13/26* 13/25 * 12/24 * 12/23 * 11/22 * 10/21 = 0.0161,总概率为30*0.0161=0.484; ④3-3分布一共有20种情况,各自对应概率13/26* 13/25 * 12/24 * 12/23 * 11/22 * 11/21 = 0.0178,总概率为20*0.0178=0.355.
目前为止全部已知信息如下:东家有5张黑桃,西家有3张。 东4-西0的概率:8/18 * 7/17* 6/16 * 5/15 = 0.0229,可能性为1,总概率为0.023; 东3-西1的概率:8/18 * 10/17* 7/16 * 6/15 = 0.0458,可能性为4,总概率为0.183; 东2-西2的概率:8/18 * 10/17* 7/16 * 9/15 = 0.0686,可能性为6,总概率为0.412; 东1-西3的概率:8/18 * 10/17* 9/16 * 8/15 = 0.0784,可能性为4,总概率为0.314; 东0-西4的概率:10/18 * 9/17* 8/16 * 7/15 = 0.0686,可能性为1,总概率为0.069.
— THE END —
☞纽约佩斯大学孔子学院:中国故事 外国人来讲☞杨振宁讲(经典)数学笑话兼论数学和物理的关系☞82岁江泽民在2008年发表论文指出:发展智能化,机器学习将有所作为……☞生活中处处的贝叶斯☞北师大名教授通过趣味数学与幽默教你学数学思维