查看原文
其他

机器学习中需要了解的 5 种采样方法






数学算法俱乐部

日期2020年05月20日

正文共:1943字4图

预计阅读时间:5分钟

来源:深度学习这件小事

采样问题是数据科学中的常见问题,对此,WalmartLabs 的数据科学家 Rahul Agarwal 分享了数据科学家需要了解的 5 种采样方法,编译整理如下。
数据科学实际上是就是研究算法。
我每天都在努力学习许多算法,所以我想列出一些最常见和最常用的算法。
本文介绍了在处理数据时可以使用的一些最常见的采样技术。

   简单随机抽样
假设您要选择一个群体的子集,其中该子集的每个成员被选择的概率都相等。
下面我们从一个数据集中选择 100 个采样点。
sample_df = df.sample(100)

   分层采样



假设我们需要估计选举中每个候选人的平均票数。现假设该国有 3 个城镇:
A 镇有 100 万工人,
B 镇有 200 万工人,以及
C 镇有 300 万退休人员。

我们可以选择在整个人口中随机抽取一个 60 大小的样本,但在这些城镇中,随机样本可能不太平衡,因此会产生偏差,导致估计误差很大。
相反,如果我们选择从 A、B 和 C 镇分别抽取 10、20 和 30 个随机样本,那么我们可以在总样本大小相同的情况下,产生较小的估计误差。
使用 python 可以很容易地做到这一点:

from sklearn.model_selection import train_test_splitX_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, test_size=0.25)


   水塘采样


我喜欢这个问题陈述:

假设您有一个项目流,它长度较大且未知以至于我们只能迭代一次。
创建一个算法,从这个流中随机选择一个项目,这样每个项目都有相同的可能被选中。

我们怎么能做到这一点?
假设我们必须从无限大的流中抽取 5 个对象,且每个元素被选中的概率都相等。
import randomdef generator(max): number = 1 while number < max: number += 1 yield number# Create as stream generatorstream = generator(10000)# Doing Reservoir Sampling from the streamk=5reservoir = []for i, element in enumerate(stream): if i+1<= k: reservoir.append(element) else: probability = k/(i+1) if random.random() < probability: # Select item in stream and remove one of the k items already selected reservoir[random.choice(range(0,k))] = elementprint(reservoir)------------------------------------[1369, 4108, 9986, 828, 5589]
从数学上可以证明,在样本中,流中每个元素被选中的概率相同。这是为什么呢?
当涉及到数学问题时,从一个小问题开始思考总是有帮助的。
所以,让我们考虑一个只有 3 个项目的流,我们必须保留其中 2 个。
当我们看到第一个项目,我们把它放在清单上,因为我们的水塘有空间。在我们看到第二个项目时,我们把它放在列表中,因为我们的水塘还是有空间。
现在我们看到第三个项目。这里是事情开始变得有趣的地方。我们有 2/3 的概率将第三个项目放在清单中。
现在让我们看看第一个项目被选中的概率:

移除第一个项目的概率是项目 3 被选中的概率乘以项目 1 被随机选为水塘中 2 个要素的替代候选的概率。这个概率是:
2/3*1/2 = 1/3
因此,选择项目 1 的概率为:
1–1/3=2/3

我们可以对第二个项目使用完全相同的参数,并且可以将其扩展到多个项目。
因此,每个项目被选中的概率相同:2/3 或者用一般的公式表示为 K/N

   随机欠采样和过采样
我们经常会遇到不平衡的数据集。
一种广泛采用的处理高度不平衡数据集的技术称为重采样。它包括从多数类(欠采样)中删除样本或向少数类(过采样)中添加更多示例。
让我们先创建一些不平衡数据示例。
from sklearn.datasets import make_classificationX, y = make_classification( n_classes=2, class_sep=1.5, weights=[0.9, 0.1], n_informative=3, n_redundant=1, flip_y=0, n_features=20, n_clusters_per_class=1, n_samples=100, random_state=10)X = pd.DataFrame(X)X[ target ] = y
我们现在可以使用以下方法进行随机过采样和欠采样:
num_0 = len(X[X[ target ]==0])num_1 = len(X[X[ target ]==1])print(num_0,num_1)# random undersampleundersampled_data = pd.concat([ X[X[ target ]==0].sample(num_1) , X[X[ target ]==1] ])print(len(undersampled_data))# random oversampleoversampled_data = pd.concat([ X[X[ target ]==0] , X[X[ target ]==1].sample(num_0, replace=True) ])print(len(oversampled_data))------------------------------------------------------------OUTPUT:90 1020180

   使用 imbalanced-learn 进行欠采样和过采样
imbalanced-learn(imblearn)是一个用于解决不平衡数据集问题的 python 包,它提供了多种方法来进行欠采样和过采样。
a. 使用 Tomek Links 进行欠采样:
imbalanced-learn 提供的一种方法叫做 Tomek Links。Tomek Links 是邻近的两个相反类的例子。
在这个算法中,我们最终从 Tomek Links 中删除了大多数元素,这为分类器提供了一个更好的决策边界。
from imblearn.under_sampling import TomekLinks
tl = TomekLinks(return_indices=True, ratio= majority )X_tl, y_tl, id_tl = tl.fit_sample(X, y)

b. 使用 SMOTE 进行过采样:
在 SMOE(Synthetic Minority Oversampling Technique)中,我们在现有元素附近合并少数类的元素。
from imblearn.over_sampling import SMOTE
smote = SMOTE(ratio= minority )X_sm, y_sm = smote.fit_sample(X, y)
imbLearn 包中还有许多其他方法,可以用于欠采样(Cluster Centroids, NearMiss 等)和过采样(ADASYN 和 bSMOTE)。

   结论
算法是数据科学的生命线。
抽样是数据科学中的一个重要课题,但我们实际上并没有讨论得足够多。
有时,一个好的抽样策略会大大推进项目的进展。错误的抽样策略可能会给我们带来错误的结果。因此,在选择抽样策略时应该小心。
via:https://towardsdatascience.com/the-5-sampling-algorithms-every-data-scientist-need-to-know-43c7bc11d17c


— THE END —


开普勒传奇的一生
施一公:为什么要独立思考、为什么要尊重科学?82岁江泽民在2008年发表论文指出:发展智能化,机器学习将有所作为……施一公:没有高考,就没有一批非常优秀的社会精英从农村走出来知乎热搜可以被人为控制吗?如果可以,怎么操作

    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存