查看原文
其他

第36期 托勒密定理及其推广和应用

阳友雄 老阳讲数学 2022-07-17

第36期   托勒密定理及其推广和应用

一般几何教科书中的“托勒密定理”,实出自依巴谷(Hipparchus)之手,托勒密只是从他的书中摘出。

摘出并完善后的托勒密(Ptolemy)定理指出,圆的内接凸四边形两对对边乘积的和等于两条对角线的乘积。

定理表述:圆的内接四边形中,两对角线所包矩形的面积等于 一组对边所包矩形的面积与另一组对边所包矩形的面积之和。

从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式,托勒密定理实质上是关于共圆性的基本性质.

在任意凸四边形ABCD中,作△ABE使∠BAE=∠CAD ∠ABE=∠ ACD,连接DE.

则△ABE∽△ACD

所以 BE/CD=AB/AC,即BE·AC=AB·CD (1)由△ABE∽△ACD得AD/AC=AE/AB,又∠BAC=∠EAD,

所以△ABC∽△AED.

BC/ED=AC/AD,即ED·AC=BC·AD (2)

(1)+(2),得

AC(BE+ED)=AB·CD+AD·BC

又因为BE+ED≥BD

(仅在四边形ABCD是某圆的内接四边形时,等号成立,即“托勒密定理”)


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存