其他
抽象函数常见题型及其解法
抽象函数常见题型及其解法
我们把没有给出具体解析式的函数称为抽象函数。由于这类问题可以全面考查学生对函数概念和性质的理解,同时抽象函数问题又将函数的定义域,值域,单调性,奇偶性,周期性和图象集于一身,所以在高考中不断出现;如2002年上海高考卷12题,2004年江苏高考卷22题,2004年浙江高考卷12题等。
不给出具体解析式,只给出函数的特殊条件或特征的函数即抽象函数。一般形式为y=f(x),或许还附有定义域、值域等,如: y=f(x), (x>0, y>0)。
抽象函数形式
幂函数:f(xy)=f(x)f(y)
正比例函数:f(xy)=f(x)f(y)
对数函数:f(x)+f(y)=f(xy)
三角函数:f(x+y)+f(x-y)=2f(x)f(y) f(x)=cosx
指数函数:f(x+y)=f(x)f(y)
周期为n的周期函数:f(x)=f(x+n)
解答抽象函数题目的基础是熟悉函数的基本知识。如果连基本的函数知识都没有掌握,解决抽象函数问题只能是空谈。具体说,学好函数要掌握常见函数的性质。例如,中学涉及的函数性质一般有单调性、奇偶性、有界性及周期性;常见的函数有指数函数、对数函数、三角函数、二次函数、对勾函数
选择合适的方法对解决抽象函数问题往往会起到事半功倍的效果。对于选择题,选用特殊值法、赋值法、图像法等等可以在很短的时间内得到答案,在应试时节省出不少时间。而对各种方法的理解,在解题中选择出合适的方法,则需要在平时的学习中多体会多感悟。