查看原文
其他

面试难点:你了解乐观锁和悲观锁吗?

Java知音 2021-03-16

点击上方“Java知音”,选择“置顶公众号”

技术文章第一时间送达!


作者:编程迷思

cnblogs.com/kismetv/p/10787228.html

1. Java 性能优化:教你提高代码运行的效率

2. 基于token的多平台身份认证架构设计

3. Spring Boot整合JWT实现用户认证(附源码)

4. Springboot启动原理解析

前言

乐观锁和悲观锁问题,是出现频率比较高的面试题。本文将由浅入深,逐步介绍它们的基本概念、实现方式(含实例)、适用场景,以及可能遇到的面试官追问,希望能够帮助你打动面试官。

目录

一、基本概念
二、实现方式(含实例)
三、优缺点和适用场景
四、面试官追问:乐观锁加锁吗?
五、面试官追问:CAS有哪些缺点?
六、总结

一、基本概念

乐观锁和悲观锁是两种思想,用于解决并发场景下的数据竞争问题。

乐观锁:乐观锁在操作数据时非常乐观,认为别人不会同时修改数据。因此乐观锁不会上锁,只是在执行更新的时候判断一下在此期间别人是否修改了数据:如果别人修改了数据则放弃操作,否则执行操作。

悲观锁:悲观锁在操作数据时比较悲观,认为别人会同时修改数据。因此操作数据时直接把数据锁住,直到操作完成后才会释放锁;上锁期间其他人不能修改数据。

二、实现方式(含实例)

在说明实现方式之前,需要明确:乐观锁和悲观锁是两种思想,它们的使用是非常广泛的,不局限于某种编程语言或数据库。

悲观锁的实现方式是加锁,加锁既可以是对代码块加锁(如Java的synchronized关键字),也可以是对数据加锁(如MySQL中的排它锁)。

乐观锁的实现方式主要有两种:CAS机制和版本号机制,下面详细介绍。

1、CAS(Compare And Swap)

CAS操作包括了3个操作数:

  • 需要读写的内存位置(V)

  • 进行比较的预期值(A)

  • 拟写入的新值(B)

CAS操作逻辑如下:如果内存位置V的值等于预期的A值,则将该位置更新为新值B,否则不进行任何操作。许多CAS的操作是自旋的:如果操作不成功,会一直重试,直到操作成功为止。

这里引出一个新的问题,既然CAS包含了Compare和Swap两个操作,它又如何保证原子性呢?答案是:CAS是由CPU支持的原子操作,其原子性是在硬件层面进行保证的。

下面以Java中的自增操作(i++)为例,看一下悲观锁和CAS分别是如何保证线程安全的。我们知道,在Java中自增操作不是原子操作,它实际上包含三个独立的操作:

  • 读取i值;

  • 加1;

  • 将新值写回i

因此,如果并发执行自增操作,可能导致计算结果的不准确。在下面的代码示例中:value1没有进行任何线程安全方面的保护,value2使用了乐观锁(CAS),value3使用了悲观锁(synchronized)。

运行程序,使用1000个线程同时对value1、value2和value3进行自增操作,可以发现:value2和value3的值总是等于1000,而value1的值常常小于1000。

public class Test {

    //value1:线程不安全
    private static int value1 = 0;
    //value2:使用乐观锁
    private static AtomicInteger value2 = new AtomicInteger(0);
    //value3:使用悲观锁
    private static int value3 = 0;
    private static synchronized void increaseValue3(){
        value3++;
    }

    public static void main(String[] args) throws Exception {
        //开启1000个线程,并执行自增操作
        for(int i = 0; i < 1000; ++i){
            new Thread(new Runnable() {
                @Override
                public void run() 
{
                    try {
                        Thread.sleep(100);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    value1++;
                    value2.getAndIncrement();
                    increaseValue3();
                }
            }).start();
        }
        //打印结果
        Thread.sleep(1000);
        System.out.println("线程不安全:" + value1);
        System.out.println("乐观锁(AtomicInteger):" + value2);
        System.out.println("悲观锁(synchronized):" + value3);
    }
}

首先来介绍AtomicInteger。AtomicInteger是java.util.concurrent.atomic包提供的原子类,利用CPU提供的CAS操作来保证原子性;除了AtomicInteger外,还有AtomicBoolean、AtomicLong、AtomicReference等众多原子类。

下面看一下AtomicInteger的源码,了解下它的自增操作getAndIncrement()是如何实现的(源码以Java7为例,Java8有所不同,但思想类似)。

public class AtomicInteger extends Number implements java.io.Serializable {
    //存储整数值,volatile保证可视性
    private volatile int value;
    //Unsafe用于实现对底层资源的访问
    private static final Unsafe unsafe = Unsafe.getUnsafe();

    //valueOffset是value在内存中的偏移量
    private static final long valueOffset;
    //通过Unsafe获得valueOffset
    static {
        try {
            valueOffset = unsafe.objectFieldOffset(AtomicInteger.class.getDeclaredField("value"));
        } catch (Exception ex) { throw new Error(ex); }
    }

    public final boolean compareAndSet(int expect, int update) {
        return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
    }

    public final int getAndIncrement() {
        for (;;) {
            int current = get();
            int next = current + 1;
            if (compareAndSet(current, next))
                return current;
        }
    }
}

源码分析说明如下:

1.getAndIncrement()实现的自增操作是自旋CAS操作:在循环中进行compareAndSet,如果执行成功则退出,否则一直执行。

2.其中compareAndSet是CAS操作的核心,它是利用Unsafe对象实现的。

3.Unsafe又是何许人也呢?Unsafe是用来帮助Java访问操作系统底层资源的类(如可以分配内存、释放内存),通过Unsafe,Java具有了底层操作能力,可以提升运行效率;强大的底层资源操作能力也带来了安全隐患(类的名字Unsafe也在提醒我们这一点),因此正常情况下用户无法使用。AtomicInteger在这里使用了Unsafe提供的CAS功能。

4.valueOffset可以理解为value在内存中的偏移量,对应了CAS三个操作数(V/A/B)中的V;偏移量的获得也是通过Unsafe实现的。

5.value域的volatile修饰符:Java并发编程要保证线程安全,需要保证原子性、可视性和有序性;CAS操作可以保证原子性,而volatile可以保证可视性和一定程度的有序性;在AtomicInteger中,volatile和CAS一起保证了线程安全性。关于volatile作用原理的说明涉及到Java内存模型(JMM),这里不详细展开。

说完了AtomicInteger,再说synchronized。synchronized通过对代码块加锁来保证线程安全:在同一时刻,只能有一个线程可以执行代码块中的代码。synchronized是一个重量级的操作,不仅是因为加锁需要消耗额外的资源,还因为线程状态的切换会涉及操作系统核心态和用户态的转换;不过随着JVM对锁进行的一系列优化(如自旋锁、轻量级锁、锁粗化等),synchronized的性能表现已经越来越好。

2、版本号机制

除了CAS,版本号机制也可以用来实现乐观锁。版本号机制的基本思路是在数据中增加一个字段version,表示该数据的版本号,每当数据被修改,版本号加1。当某个线程查询数据时,将该数据的版本号一起查出来;当该线程更新数据时,判断当前版本号与之前读取的版本号是否一致,如果一致才进行操作。

需要注意的是,这里使用了版本号作为判断数据变化的标记,实际上可以根据实际情况选用其他能够标记数据版本的字段,如时间戳等。

下面以“更新玩家金币数”为例(数据库为MySQL,其他数据库同理),看看悲观锁和版本号机制是如何应对并发问题的。

考虑这样一种场景:游戏系统需要更新玩家的金币数,更新后的金币数依赖于当前状态(如金币数、等级等),因此更新前需要先查询玩家当前状态。

下面的实现方式,没有进行任何线程安全方面的保护。如果有其他线程在query和update之间更新了玩家的信息,会导致玩家金币数的不准确。

@Transactional
public void updateCoins(Integer playerId){
    //根据player_id查询玩家信息
    Player player = query("select coins, level from player where player_id = {0}", playerId);
    //根据玩家当前信息及其他信息,计算新的金币数
    Long newCoins = ……;
    //更新金币数
    update("update player set coins = {0} where player_id = {1}", newCoins, playerId);
}

为了避免这个问题,悲观锁通过加锁解决这个问题,代码如下所示。在查询玩家信息时,使用select …… for update进行查询;该查询语句会为该玩家数据加上排它锁,直到事务提交或回滚时才会释放排它锁;在此期间,如果其他线程试图更新该玩家信息或者执行select for update,会被阻塞。

@Transactional
public void updateCoins(Integer playerId){
    //根据player_id查询玩家信息(加排它锁)
    Player player = queryForUpdate("select coins, level from player where player_id = {0} for update", playerId);
    //根据玩家当前信息及其他信息,计算新的金币数
    Long newCoins = ……;
    //更新金币数
    update("update player set coins = {0} where player_id = {1}", newCoins, playerId);
}

版本号机制则是另一种思路,它为玩家信息增加一个字段:version。在初次查询玩家信息时,同时查询出version信息;在执行update操作时,校验version是否发生了变化,如果version变化,则不进行更新。

@Transactional
public void updateCoins(Integer playerId){
    //根据player_id查询玩家信息,包含version信息
    Player player = query("select coins, level, version from player where player_id = {0}", playerId);
    //根据玩家当前信息及其他信息,计算新的金币数
    Long newCoins = ……;
    //更新金币数,条件中增加对version的校验
    update("update player set coins = {0} where player_id = {1} and version = {2}", newCoins, playerId, player.version);
}

三、优缺点和适用场景

乐观锁和悲观锁并没有优劣之分,它们有各自适合的场景;下面从两个方面进行说明。

1、功能限制

与悲观锁相比,乐观锁适用的场景受到了更多的限制,无论是CAS还是版本号机制。

例如,CAS只能保证单个变量操作的原子性,当涉及到多个变量时,CAS是无能为力的,而synchronized则可以通过对整个代码块加锁来处理。再比如版本号机制,如果query的时候是针对表1,而update的时候是针对表2,也很难通过简单的版本号来实现乐观锁。

2、竞争激烈程度

如果悲观锁和乐观锁都可以使用,那么选择就要考虑竞争的激烈程度:

当竞争不激烈 (出现并发冲突的概率小)时,乐观锁更有优势,因为悲观锁会锁住代码块或数据,其他线程无法同时访问,影响并发,而且加锁和释放锁都需要消耗额外的资源。

当竞争激烈(出现并发冲突的概率大)时,悲观锁更有优势,因为乐观锁在执行更新时频繁失败,需要不断重试,浪费CPU资源。

四、面试官追问:乐观锁加锁吗?

笔者在面试时,曾遇到面试官如此追问。下面是我对这个问题的理解:

1.乐观锁本身是不加锁的,只是在更新时判断一下数据是否被其他线程更新了;AtomicInteger便是一个例子。

2.有时乐观锁可能与加锁操作合作,例如,在前述updateCoins()的例子中,MySQL在执行update时会加排它锁。但这只是乐观锁与加锁操作合作的例子,不能改变“乐观锁本身不加锁”这一事实。

五、面试官追问:CAS有哪些缺点?

面试到这里,面试官可能已经中意你了。不过面试官准备对你发起最后的进攻:你知道CAS这种实现方式有什么缺点吗?

下面是CAS一些不那么完美的地方:

1、ABA问题

假设有两个线程——线程1和线程2,两个线程按照顺序进行以下操作:

  • (1)线程1读取内存中数据为A;

  • (2)线程2将该数据修改为B;

  • (3)线程2将该数据修改为A;

  • (4)线程1对数据进行CAS操作

在第(4)步中,由于内存中数据仍然为A,因此CAS操作成功,但实际上该数据已经被线程2修改过了。这就是ABA问题。

在AtomicInteger的例子中,ABA似乎没有什么危害。但是在某些场景下,ABA却会带来隐患,例如栈顶问题:一个栈的栈顶经过两次(或多次)变化又恢复了原值,但是栈可能已发生了变化。

对于ABA问题,比较有效的方案是引入版本号,内存中的值每发生一次变化,版本号都+1;在进行CAS操作时,不仅比较内存中的值,也会比较版本号,只有当二者都没有变化时,CAS才能执行成功。Java中的AtomicStampedReference类便是使用版本号来解决ABA问题的。

2、高竞争下的开销问题

在并发冲突概率大的高竞争环境下,如果CAS一直失败,会一直重试,CPU开销较大。针对这个问题的一个思路是引入退出机制,如重试次数超过一定阈值后失败退出。当然,更重要的是避免在高竞争环境下使用乐观锁。

3、功能限制

CAS的功能是比较受限的,例如CAS只能保证单个变量(或者说单个内存值)操作的原子性,这意味着:(1)原子性不一定能保证线程安全,例如在Java中需要与volatile配合来保证线程安全;(2)当涉及到多个变量(内存值)时,CAS也无能为力。

除此之外,CAS的实现需要硬件层面处理器的支持,在Java中普通用户无法直接使用,只能借助atomic包下的原子类使用,灵活性受到限制。

六、总结

本文介绍了乐观锁和悲观锁的基本概念、实现方式(含实例)、适用场景,以及可能遇到的面试官追问,希望能够对你面试有帮助。最后,祝大家都拿到心仪的offer!

参考文献

https://www.cnblogs.com/qjjazry/p/6581568.html
https://segmentfault.com/a/1190000016611415
https://www.cnblogs.com/pkufork/p/java_unsafe.html
https://stackoverflow.com/questions/19660737/aba-in-lock-free-algorithms
https://www.zhihu.com/question/23281499


看完本文有收获?请转发分享给更多人


    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存