查看原文
其他

TED | 纳米科技何去何从

墨白 TED每日推荐 2022-11-27

  TED每日推荐

 ID:days1440

关注


TED演讲


(这是图片,下滑至底部点击“阅读原文”可以查看本次演讲视频


纳米科技何去何从

George Tulevski

演讲 TED 科技

每年电脑芯片借助纳米科技尺寸能缩小一倍,而其功能却能增加一倍。但如果芯片变得小到不能再小了,纳米科技又将何去何从呢? 


#英文讲稿#


00:00

Let's imagine a sculptor building a statue, just chipping away with his chisel. Michelangelo had this elegant way of describing it when he said, "Every block of stone has a statue inside of it, and it's the task of the sculptor to discover it." But what if he worked in the opposite direction? Not from a solid block of stone, but from a pile of dust, somehow gluing millions of these particles together to form a statue.


00:25

I know that's an absurd notion. It's probably impossible. The only way you get a statue from a pile of dust is if the statue built itself -- if somehow we could compel millions of these particles to come together to form the statue.


00:40

Now, as odd as that sounds, that is almost exactly the problem I work on in my lab. I don't build with stone, I build with nanomaterials. They're these just impossibly small, fascinating little objects. They're so small that if this controller was a nanoparticle, a human hair would be the size of this entire room. And they're at the heart of a field we call nanotechnology, which I'm sure we've all heard about, and we've all heard how it is going to change everything.


01:07

When I was a graduate student, it was one of the most exciting times to be working in nanotechnology. There were scientific breakthroughs happening all the time. The conferences were buzzing, there was tons of money pouring in from funding agencies. And the reason is when objects get really small, they're governed by a different set of physics that govern ordinary objects, like the ones we interact with. We call this physics quantum mechanics. And what it tells you is that you can precisely tune their behavior just by making seemingly small changes to them,like adding or removing a handful of atoms, or twisting the material. It's like this ultimate toolkit.You really felt empowered; you felt like you could make anything.


01:45

And we were doing it -- and by we I mean my whole generation of graduate students. We were trying to make blazing fast computers using nanomaterials. We were constructing quantum dotsthat could one day go in your body and find and fight disease. There were even groups trying to make an elevator to space using carbon nanotubes. You can look that up, that's true. Anyways, we thought it was going to affect all parts of science and technology, from computing to medicine.And I have to admit, I drank all of the Kool-Aid. I mean, every last drop.


02:18

But that was 15 years ago, and -- fantastic science was done, really important work. We've learned a lot. We were never able to translate that science into new technologies -- into technologies that could actually impact people. And the reason is, these nanomaterials -- they're like a double-edged sword. The same thing that makes them so interesting -- their small size --also makes them impossible to work with. It's literally like trying to build a statue out of a pile of dust. And we just don't have the tools that are small enough to work with them. But even if we did, it wouldn't really matter, because we couldn't one by one place millions of particles together to build a technology. So because of that, all of the promise and all of the excitement has remained just that: promise and excitement. We don't have any disease-fighting nanobots, there's no elevators to space, and the thing that I'm most interested in, no new types of computing.


03:13

Now that last one, that's a really important one. We just have come to expect the pace of computing advancements to go on indefinitely. We've built entire economies on this idea. And this pace exists because of our ability to pack more and more devices onto a computer chip. And as those devices get smaller, they get faster, they consume less power and they get cheaper. And it's this convergence that gives us this incredible pace.


03:39

As an example: if I took the room-sized computer that sent three men to the moon and back and somehow compressed it -- compressed the world's greatest computer of its day, so it was the same size as your smartphone -- your actual smartphone, that thing you spent 300 bucks on and just toss out every two years, would blow this thing away. You would not be impressed. It couldn't do anything that your smartphone does. It would be slow, you couldn't put any of your stuff on it,you could possibly get through the first two minutes of a "Walking Dead" episode if you're lucky.


04:14

The point is the progress -- it's not gradual. The progress is relentless. It's exponential. It compounds on itself year after year, to the point where if you compare a technology from one generation to the next, they're almost unrecognizable. And we owe it to ourselves to keep this progress going. We want to say the same thing 10, 20, 30 years from now: look what we've done over the last 30 years. Yet we know this progress may not last forever. In fact, the party's kind of winding down. It's like "last call for alcohol," right? If you look under the covers, by many metrics like speed and performance, the progress has already slowed to a halt. So if we want to keep this party going, we have to do what we've always been able to do, and that is to innovate.


04:57

So our group's role and our group's mission is to innovate by employing carbon nanotubes,because we think that they can provide a path to continue this pace. They are just like they sound.They're tiny, hollow tubes of carbon atoms, and their nanoscale size, that small size, gives rise to these just outstanding electronic properties. And the science tells us if we could employ them in computing, we could see up to a ten times improvement in performance. It's like skipping through several technology generations in just one step.


05:28

So there we have it. We have this really important problem and we have what is basically the ideal solution. The science is screaming at us, "This is what you should be doing to solve your problem." So, all right, let's get started, let's do this. But you just run right back into that double-edged sword. This "ideal solution" contains a material that's impossible to work with. I'd have to arrange billions of them just to make one single computer chip. It's that same conundrum, it's like this undying problem.


05:59

At this point, we said, "Let's just stop. Let's not go down that same road. Let's just figure out what's missing. What are we not dealing with? What are we not doing that needs to be done?" It's like in "The Godfather," right? When Fredo betrays his brother Michael, we all know what needs to be done. Fredo's got to go.


06:17

But Michael -- he puts it off. Fine, I get it. Their mother's still alive, it would make her upset. We just said, "What's the Fredo in our problem?" What are we not dealing with? What are we not doing, but needs to be done to make this a success?" And the answer is that the statue has to build itself. We have to find a way, somehow, to compel, to convince billions of these particles to assemble themselves into the technology. We can't do it for them. They have to do it for themselves. And it's the hard way, and this is not trivial, but in this case, it's the only way.


06:55

Now, as it turns out, this is not that alien of a problem. We just don't build anything this way.People don't build anything this way. But if you look around -- and there's examples everywhere --Mother Nature builds everything this way. Everything is built from the bottom up. You can go to the beach, you'll find these simple organisms that use proteins -- basically molecules -- to template what is essentially sand, just plucking it from the sea and building these extraordinary architectures with extreme diversity. And nature's not crude like us, just hacking away. She's elegant and smart, building with what's available, molecule by molecule, making structures with a complexity and a diversity that we can't even approach. And she's already at the nano. She's been there for hundreds of millions of years. We're the ones that are late to the party.


07:44

So we decided that we're going to use the same tool that nature uses, and that's chemistry.Chemistry is the missing tool. And chemistry works in this case because these nanoscale objects are about the same size as molecules, so we can use them to steer these objects around, much like a tool. That's exactly what we've done in our lab. We've developed chemistry that goes into the pile of dust, into the pile of nanoparticles, and pulls out exactly the ones we need. Then we can use chemistry to arrange literally billions of these particles into the pattern we need to build circuits. And because we can do that, we can build circuits that are many times faster than what anyone's been able to make using nanomaterials before. Chemistry's the missing tool, and every day our tool gets sharper and gets more precise. And eventually -- and we hope this is within a handful of years -- we can deliver on one of those original promises.


08:36

Now, computing is just one example. It's the one that I'm interested in, that my group is really invested in, but there are others in renewable energy, in medicine, in structural materials, where the science is going to tell you to move towards the nano. That's where the biggest benefit is. But if we're going to do that, the scientists of today and tomorrow are going to need new tools -- tools just like the ones I described. And they will need chemistry. That's the point. The beauty of science is that once you develop these new tools, they're out there. They're out there forever, and anyone anywhere can pick them up and use them, and help to deliver on the promise of nanotechnology.


09:17

Thank you so much for your time. I appreciate it.


#中文讲稿#


00:00

让我们想象一个 雕刻家在打造一个雕塑, 用他的凿子慢慢雕饰。 米开朗基罗用这样一种 优雅的方式来描述这件事: “每块石头当中都藏着一个雕塑, 而雕刻家的工作就是去发现它。” 但要是他从完全相反的角度来做呢? 不是从一个完整的石块当中, 而是从一堆尘埃当中, 通过某种方式,将这数百万的 颗粒粘在一起形成雕塑。


00:25

我知道这听起来很荒唐。 这应该不可能吧。 唯一一种能够从尘埃中 得到雕塑的方法 就是让雕塑自己建造自己, 想出某种办法,强制使得 这些微粒都聚集在一起 形成雕塑。


00:40

这也许听起来很奇怪, 但这就是我一直以来 在实验室里研究的问题。 我不用石头来建造, 我用纳米材料来建造。 它们就是这些不可思议的 细小的,神奇的东西。 它们是如此的细微,以至于如果 这个遥控器就是一个纳米颗粒的话, 那么一根人类头发 就将有整个房间这么大。 它们也是我们所说的纳米科技的核心, 我们都听说过纳米科技, 我们都听说过它将如何改变一切。


01:07

当我还是一名研究生的时候, 那也是纳米技术发展 最令人激动的那段时间。 很多的科技突破连续不断的出现。 各种会议在四处召开, 投资机构的资金大量涌入。 原因是 当东西变得很小的时候, 它们所遵循的物理定则和 正常物品所经历的, 就是我们熟悉的,完全不同。 我们称其为量子物理。而量子物理告诉你的 就是你可以通过一些 看似细微的改变, 来精确调整它们的行为, 比如增加或是减少部分原子, 或是改变其形状。 它们就像是终极工具箱。 你甚至会感到无所不能; 就像是可以做出世间万物一样。


01:45

我们一直都在从事这件事, “我们”是指我那一代的所有研究生们。 我们试图用纳米材料制作超快计算机。 我们制造那些量子点, 终有一天它们会进入人体内 发现并对抗疾病。 甚至还有一批人,他们 尝试利用纳米管去制造 通向太空的电梯。 你可以查查看,这些都是真的。 总的来说,我们认为这项技术 将会影响科学与技术的 方方面面,从计算到医药。 我必须要承认, 我是彻底的屈服于这项技术了, 我的意思是,完完全全的。


02:18

那大概是15年前的事儿了—— 然后—— 研究了奇妙的科学现象, 这是十分重要的工作。 我们学到了很多。 但我们却从未能够将这种 科学转化为新的技术, 那种能够真正影响人们的技术。 原因在于,这些纳米材料, 它们就像是双刃剑。 就是那种让它们变得 有趣起来的特质, 它们微小的体积, 这也使得操作它们变得极其困难。 这几乎无异于尝试 用一堆尘埃建造雕塑。 我们就没有小到能够 用于操作它们的工具。 但是即使我们有这样的工具, 也并不会改变什么, 因为我们不可能一个一个的 将成千上万的小颗粒摆放在一起 去打造一项技术。 因为这样的原因, 所有的那些期许与激动, 迟迟未能变成现实。 我们并没有得到那些 对抗疾病的纳米机器人, 没有得到通向宇宙的电梯, 而在我最感兴趣的领域, 也没有得到新的计算机运行方法。


03:13

最后的,也是十分重要的一点是, 我们必须继续去预期 计算机运行的进步步伐 将无穷无尽的延续下去。 我们的整个经济体都是 构建于那个想法之上的。 这样的步伐得以存在的原因 是我们能够将越来越多的设备安装在 一块电脑芯片上。 当这些设备变得越来越小的时候, 它们就运行的更快,耗能更少, 价格也越来越便宜。 是这些因素的汇集带给了我们 这样不可思议的进步步伐。


03:39

举个例子: 如果说我拿来那个房间大小的, 把三个人成功送上并接回月球的计算机, 然后通过某种方式压缩它, 把当代最伟大的计算机压缩, 然后它就变得和你的 智能手机一样大小—— 那么你的智能手机, 就是你花了300美金, 每隔个两年就换掉的那种, 就会完爆它。 你完全不会被它惊艳到。 你的手机能做的,它什么也做不了。 它运行起来会很慢, 你没法在上面安装任何东西, 要是运气好的话,你没准可以 先看个两分钟“行尸走肉”。


04:14

问题是这种进步并非是渐进的。 进步是持续不断的。 以指数形式, 这样年复一年的自我叠加, 直到某个时间点, 当你把这一代人的科技 与下一代的比较, 已经是面目全非了。 我们有责任让这种进步继续下去。 我们十年,二十年,三十年以后, 还是想要重复这样的话: 看看我们在过去的 三十年里都做了些什么。 但是我们知道, 这样的进步不可能一直持续下去。 事实上,这场派对已经 开始走下坡路了。 就好比酒吧“最后一单”,是吧? 如果你看到本质, 从一些像是速度 和性能的标准上来说, 发展已经趋于停滞了。 所以,如果我们想要 让这场派对继续下去, 我们就必须去做 长久以来一直坚持的, 那就是去创新。


04:57

所以,我们团队的角色, 我们的任务 就是运用碳纳米管去创新, 我们认为它会给我们提供一条道路, 让我们能保持这样的进步步伐。 名副其实。 它们很小,是由碳原子组成的中空管, 它们那种纳米级的, 极其微小的体积, 也带来了杰出的电属性。 科学告诉我们,如果我们 能够将它们运用到运算当中, 我们就能够看到10倍的性能提升。 仿佛一步就跳过了好几代的科技。


05:28

所以,我们找到了。 我们找到了这个真正重要的问题, 还有这个近乎理想的解决方案。 科学在向我们咆哮, “这就是你们该做的, 去解决你们的问题。” 那么,让我们开始吧, 准备大干一场。 但是你很快又会回到那把双刃剑。 这个“理想答案”包含了一种 我们不可能操作的材料。 为了制作一个电脑芯片,我就 必须要排列数亿万个碳纳米管。 同样的问题似乎永远无解。


05:59

到了这时,我们就说, “让我们停一下。 先别继续下去。 先想想还缺了点什么。 我们错过了什么吗? 有什么必要的环节被遗漏了?” 就像是“教父”,是吧? 当弗雷多背叛他的兄弟迈克尔, 我们都知道他马上要干什么。 弗雷多必须要离开。


06:17

但是迈克尔,他居然放过了。 好吧,我知道了。 他们的妈妈还活着, 这会令她伤心的。 我们就是想说, “在我们这儿,是什么 扮演着弗雷多的角色呢? 我们错过了什么? 我们到底遗漏了什么, 导致无法成功。” 而答案是,这个雕塑 必须要自己建造自己。 我们必须找到一种方法, 通过某种途径, 迫使、说服这些上亿的微粒 自己组装成我们想要的技术。 我们没办法代它们完成。 它们必须要自己完成这件事。 这很困难,不是什么简单小事, 而在这种境况当中, 也是唯一的办法。


06:55

现在,结果表明,这个问题并不过分。 只是我们平常不这样造东西而已。 人们从来没有这么打造过什么东西。 但是当你环顾四周—— 到处都是这样的例子—— 大自然母亲以这样的方式建造万物。任何事物都是从无到有。 你可以去沙滩, 会发现这些简单的生物, 利用蛋白质—— 基本上是各种分子—— 利用沙子当作模版, 把它从海中拉出来, 然后建造这些 万千风情的神奇建筑。 但自然不像我们这样粗鲁, 到处乱砍乱伐。 她端庄、睿智, 用手边的材料, 一个分子一个分子的, 建造出这些各式各样的复杂结构, 而以我们人类的能力根本不可能做到。 她早就达到纳米级了。 她已经在那里待了亿万年了。 我们才是迟到的那个。


07:44

所以,我们决定, 也要用大自然的工具, 那就是化学。 化学就是那个被忽略的工具。 在这种情境下能使用化学, 是因为这些纳米级的小东西 都和分子差不多大小, 所以我们可以利用化学反应 来控制这些小东西, 就像是一种工具一样。 这就是我们在实验室里所做的。 我们设计了一种 能够进入这些尘埃, 这些纳米微粒堆的化学, 它能够准确挑选出我们 所需要的那些纳米微粒。 然后,我们就利用化学, 把数亿的微粒 排列成我们建造电路所需要的形状。 因为我们能做到那一点, 我们就可以建造出 比运用纳米材料之前 快好多倍的线路。 化学就是那个被忽略的工具, 而每天,我们的工具都会变得 更加锋利,更加精准。 最后—— 我们也希望会在几年之内, 就可以达到开始的那些预期中的一个。


08:36

运算只是一个例子。 那是我们所感兴趣的, 我们的团队所投入的领域, 但是在很多其它领域, 可再生能源,医药, 建筑材料, 科学都将引领我们走向纳米技术。 这就是最大的好处。 但是,如果我们想要这么做, 现在和未来的科学家们, 就需要新的工具, 就像是我描绘的那种一样。 他们需要化学,这是重点。 科学的美丽之处就在于, 一旦你研发了新的工具, 它们就唾手可得了。 它们变得无处不在, 任何人,在任何地方, 都可以随时拿来并使用它们, 帮助实现那些纳米科技的承诺。

09:17


非常感谢你们。 我很感激。


(点击图片可查看大图)



查找、收集、整理不易

支持墨墨请点这里

↓↓↓

#留下你的名字,让我知道你是谁#

TED | 水下博物馆

TED | 生命的冲浪者

TED | 世上最后一片净土


你好

我是@墨白

很高兴

在这里认识你

希望今后的日子,有你陪伴。



- 记得关注我啊,晚安 -

本文仅供分享,一切版权归TED所有。


↓↓↓看视频,点这里

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存