查看原文
其他

简单可视化-送你一双发现美的眼睛

2017-06-20 陈同 生信宝典

用PyMOL展示配体和受体相互作用的原子和氢键

为了简化展示过程,我们设计了一个pml脚本 (脚本内有很详细的解释),只需要修改脚本里面受体和配体的名字,然后在PyMOL的命令行界面输入PyMOL> run display.pml即可获得展示结果。当然这个脚本也可以使用程序generatePmlForHbond.py生成。

############################################################ ###All one needs to do is replacing:                        ## ###  * Protein structure file: E:\docking\1hsg_prot.pdb     ## ###  * Protein name: 1hsg                                   ## ###  * Docking result file: E:\docking\indinavir.pdbqt      ## ###  * Docking result name (normally ligand name): indinavir## ############################################################ # The following 4 lines:    # 1. load protein structure and rename it    # 2. add hydrogen (`h_add` uses a primitive algorithm to add hydrogens onto a molecule.)    # 3. hide protein display    # 4. show cartoon display for protein load E:\yunpan\docking\1hsg_prot.pdb, 1hsg h_add 1hsg hide everything, 1hsg show cartoon, 1hsg cmd.spectrum("count", selection="1hsg", byres=1) # The following 6 lines:    # 1. load ligand structure and rename it    # 2. add hydrogen    # 3. hide ligand display    # 4. show ligand in sticks mode    # 5. Set width of stick to 0.15    # 6. Set atom color: C-white;N-blue;O-red load E:\yunpan\docking\indinavir.pdbqt, indinavir h_add indinavir hide everything, indinavir show sticks, indinavir set stick_radius, 0.15 util.cbaw indinavir # The following 1 line:    # 1. Select metal ions select metals, symbol mg+ca+fe+zn # The following 2 lines:    # 1. Set hydrogen donator    # 2. Set hydrogen accrptor    # `select` creates a named selection from an atom selection.    # `select name, (selection)` select h_donator,  (elem n,o and (neighbor hydro)) select h_acceptor, (elem o or (elem n and not (neighbor hydro))) # The following 4 lines:    # 1. Create link between ligand_h_acceptor and prot_h_donator  within given distance 3.2    # 2. Create link between ligand_h_donator  and prot_h_acceptor within given distance 3.2    #    Set filter 3.6 for ideal geometry and filter 3.2 for minimally acceptable geometry    # 3. Set red color for ligand_h_acceptor and prot_h_donator    # 4. Set blue color for ligand_h_donator  and prot_h_acceptor    # `distance` creates a new distance object between two selections. It will display all distances within the cutoff. Distance is also used to make hydrogen bonds like `distance hbonds, all, all, 3.2, mode=2`.    # distance [ name [, selection1 [, selection2 [, cutoff [, mode ]]]]] distance LaccPdon, (indinavir and h_acceptor), (1hsg and h_donator), 3.2 distance LdonPacc, (indinavir and h_donator), (1hsg and h_acceptor), 3.2 color red, LaccPdon color blue, LdonPacc #distance Fe_C20, (fep and name C20), (heme and name fe)) # The following 6 lines:    # 1. Select non-hydro atoms of ligands    # 2. Select protein atoms within 5A of selected atoms in last step    # 3. Label alpha-c(ca) of selected residues with residue name and residue position    # 4. Set label color back    # 5. Set background white    # 6. Hidden hydrogenes select sele, indinavir & not hydro select sele, byres (sele expand 5) & 1hsg one_letter ={'VAL':'V', 'ILE':'I', 'LEU':'L', 'GLU':'E', 'GLN':'Q', \ 'ASP':'D', 'ASN':'N', 'HIS':'H', 'TRP':'W', 'PHE':'F', 'TYR':'Y',    \ 'ARG':'R', 'LYS':'K', 'SER':'S', 'THR':'T', 'MET':'M', 'ALA':'A',    \ 'GLY':'G', 'PRO':'P', 'CYS':'C'} label name ca & sele, "%s-%s" % (one_letter[resn],resi) bg white set label_color, black hide (hydro) # The follwing 5 lines    # 1. Comment out this line    # 2. Create an object `surrounding_res` to represent selected protein atoms    #    `create`: creates a new molecule object from a selection. It can also be used to create states in an   existing object.    #    `create name, (selection)`    # 3. Display created surface    # 4. Set color for surrounding_res    # 5. Set transparency for surrounding_res    #    Transparency is used to adjust the transparency of Surfaces and Slices.        #    `set transparency, F, selection` #show surface, 1hsg create surrounding_res, sele show surface, surrounding_res color grey80, surrounding_res set transparency, 0.5, surrounding_res

此外还可以使用如下脚本(list_hbonds.py)输出相互作用的原子及其位置。

# Copyright (c) 2010 Robert L. Campbell from pymol import cmd def list_hb(selection,selection2=None,cutoff=3.2,angle=55,mode=1,hb_list_name='hbonds'):    """    USAGE    list_hb selection, [selection2 (default=None)], [cutoff (default=3.2)],                       [angle (default=55)], [mode (default=1)],                       [hb_list_name (default='hbonds')]    The script automatically adds a requirement that atoms in the    selection (and selection2 if used) must be either of the elements N or    O.    If mode is set to 0 instead of the default value 1, then no angle    cutoff is used, otherwise the angle cutoff is used and defaults to 55    degrees.    e.g.    To get a list of all H-bonds within chain A of an object      list_hb 1abc & c. a &! r. hoh, cutoff=3.2, hb_list_name=abc-hbonds    To get a list of H-bonds between chain B and everything else:      list_hb 1tl9 & c. b, 1tl9 &! c. b    """    cutoff=float(cutoff)    angle=float(angle)    mode=float(mode)    # ensure only N and O atoms are in the selection    selection = selection + " & e. n+o"    if not selection2:        hb = cmd.find_pairs(selection,selection,mode=mode,cutoff=cutoff,angle=angle)    else:        selection2 = selection2 + " & e. n+o"        hb = cmd.find_pairs(selection,selection2,mode=mode,cutoff=cutoff,angle=angle)    # sort the list for easier reading    hb.sort(lambda x,y:(cmp(x[0][1],y[0][1])))    for pairs in hb:        cmd.iterate("%s and index %s" % (pairs[0][0],pairs[0][1]), 'print "%1s/%3s`%s/%-4s " % (chain,resn,resi,name),')        cmd.iterate("%s and index %s" % (pairs[1][0],pairs[1][1]), 'print "%1s/%3s`%s/%-4s " % (chain,resn,resi,name),')        print "%.2f" % cmd.distance(hb_list_name,"%s and index %s" % (pairs[0][0],pairs[0][1]),"%s and index %s" % (pairs[1][0],pairs[1][1])) #cmd.extend("list_hb",list_hb) #if __name__ == "__main__": cmd.load("E:/yunpan/docking/1hsg_prot.pdb", "1hsg") cmd.h_add("(1hsg)") cmd.load("E:/yunpan/docking/indinavir.pdbqt","indinavir") cmd.h_add("(indinavir)") h_donator  = "elem n,o & (neighbor hydro)" h_acceptor = "elem o | (elem n & !(neighbor hydro))" lacc = "indinavir & (elem o | (elem n & !(neighbor hydro)))" ldon = "indinavir & (elem n,o & (neighbor hydro))" pacc = "1hsg & (elem o | (elem n & !(neighbor hydro)))" pdon = "1hsg & (elem n,o & (neighbor hydro))" list_hb(ldon, pacc, hb_list_name="l2p_hbonds") list_hb(lacc, pdon, hb_list_name="p2l_hbonds")

输出结果如下:

PyMOL>run E:/docking/list_hbonds.py B/MK1`902/N4    B/GLY`27/O     3.03 B/MK1`902/O4    B/GLY`27/O     3.16 B/MK1`902/O2    A/ASP`25/OD1   2.77 B/MK1`902/O2    B/ASP`25/OD1   2.63

看上去比显示的氢键少了三个,这是因为我们在第二个函数中使用了H-键角度限制,如果在调用时给定参数list_hb(mode=0)则会获得一致结果。


       
H-bond结果展示。第一张图为运行display.pml后的结果,蓝色虚线为氢键;第二张图为运行list_hbonds.py后的结果, 黄色虚线为氢键(覆盖了之前的蓝色)。可以通过点选LaccPdon, LdonPacc, l2p_hbonds显示不同的氢键。


展示疏水表面

# color_h # ------- # PyMOL command to color protein molecules according to the Eisenberg hydrophobicity scale # # Source: http://us.expasy.org/tools/pscale/Hphob.Eisenberg.html # Amino acid scale: Normalized consensus hydrophobicity scale # Author(s): Eisenberg D., Schwarz E., Komarony M., Wall R. # Reference: J. Mol. Biol. 179:125-142 (1984) # # Amino acid scale values: # # Ala:  0.620 # Arg: -2.530 # Asn: -0.780 # Asp: -0.900 # Cys:  0.290 # Gln: -0.850 # Glu: -0.740 # Gly:  0.480 # His: -0.400 # Ile:  1.380 # Leu:  1.060 # Lys: -1.500 # Met:  0.640 # Phe:  1.190 # Pro:  0.120 # Ser: -0.180 # Thr: -0.050 # Trp:  0.810 # Tyr:  0.260 # Val:  1.080 # # Usage: # color_h (selection) # from pymol import cmd def color_h(selection='all'):        s = str(selection)    print s        cmd.set_color('color_ile',[0.996,0.062,0.062])        cmd.set_color('color_phe',[0.996,0.109,0.109])        cmd.set_color('color_val',[0.992,0.156,0.156])        cmd.set_color('color_leu',[0.992,0.207,0.207])        cmd.set_color('color_trp',[0.992,0.254,0.254])        cmd.set_color('color_met',[0.988,0.301,0.301])        cmd.set_color('color_ala',[0.988,0.348,0.348])        cmd.set_color('color_gly',[0.984,0.394,0.394])        cmd.set_color('color_cys',[0.984,0.445,0.445])        cmd.set_color('color_tyr',[0.984,0.492,0.492])        cmd.set_color('color_pro',[0.980,0.539,0.539])        cmd.set_color('color_thr',[0.980,0.586,0.586])        cmd.set_color('color_ser',[0.980,0.637,0.637])        cmd.set_color('color_his',[0.977,0.684,0.684])        cmd.set_color('color_glu',[0.977,0.730,0.730])        cmd.set_color('color_asn',[0.973,0.777,0.777])        cmd.set_color('color_gln',[0.973,0.824,0.824])        cmd.set_color('color_asp',[0.973,0.875,0.875])        cmd.set_color('color_lys',[0.899,0.922,0.922])        cmd.set_color('color_arg',[0.899,0.969,0.969])        cmd.color("color_ile","("+s+" and resn ile)")        cmd.color("color_phe","("+s+" and resn phe)")        cmd.color("color_val","("+s+" and resn val)")        cmd.color("color_leu","("+s+" and resn leu)")        cmd.color("color_trp","("+s+" and resn trp)")        cmd.color("color_met","("+s+" and resn met)")        cmd.color("color_ala","("+s+" and resn ala)")        cmd.color("color_gly","("+s+" and resn gly)")        cmd.color("color_cys","("+s+" and resn cys)")        cmd.color("color_tyr","("+s+" and resn tyr)")        cmd.color("color_pro","("+s+" and resn pro)")        cmd.color("color_thr","("+s+" and resn thr)")        cmd.color("color_ser","("+s+" and resn ser)")        cmd.color("color_his","("+s+" and resn his)")        cmd.color("color_glu","("+s+" and resn glu)")        cmd.color("color_asn","("+s+" and resn asn)")        cmd.color("color_gln","("+s+" and resn gln)")        cmd.color("color_asp","("+s+" and resn asp)")        cmd.color("color_lys","("+s+" and resn lys)")        cmd.color("color_arg","("+s+" and resn arg)") cmd.extend('color_h',color_h) def color_h2(selection='all'):        s = str(selection)    print s    cmd.set_color("color_ile2",[0.938,1,0.938])    cmd.set_color("color_phe2",[0.891,1,0.891])    cmd.set_color("color_val2",[0.844,1,0.844])    cmd.set_color("color_leu2",[0.793,1,0.793])    cmd.set_color("color_trp2",[0.746,1,0.746])    cmd.set_color("color_met2",[0.699,1,0.699])    cmd.set_color("color_ala2",[0.652,1,0.652])    cmd.set_color("color_gly2",[0.606,1,0.606])    cmd.set_color("color_cys2",[0.555,1,0.555])    cmd.set_color("color_tyr2",[0.508,1,0.508])    cmd.set_color("color_pro2",[0.461,1,0.461])    cmd.set_color("color_thr2",[0.414,1,0.414])    cmd.set_color("color_ser2",[0.363,1,0.363])    cmd.set_color("color_his2",[0.316,1,0.316])    cmd.set_color("color_glu2",[0.27,1,0.27])    cmd.set_color("color_asn2",[0.223,1,0.223])    cmd.set_color("color_gln2",[0.176,1,0.176])    cmd.set_color("color_asp2",[0.125,1,0.125])    cmd.set_color("color_lys2",[0.078,1,0.078])    cmd.set_color("color_arg2",[0.031,1,0.031])        cmd.color("color_ile2","("+s+" and resn ile)")        cmd.color("color_phe2","("+s+" and resn phe)")        cmd.color("color_val2","("+s+" and resn val)")        cmd.color("color_leu2","("+s+" and resn leu)")        cmd.color("color_trp2","("+s+" and resn trp)")        cmd.color("color_met2","("+s+" and resn met)")        cmd.color("color_ala2","("+s+" and resn ala)")        cmd.color("color_gly2","("+s+" and resn gly)")        cmd.color("color_cys2","("+s+" and resn cys)")        cmd.color("color_tyr2","("+s+" and resn tyr)")        cmd.color("color_pro2","("+s+" and resn pro)")        cmd.color("color_thr2","("+s+" and resn thr)")        cmd.color("color_ser2","("+s+" and resn ser)")        cmd.color("color_his2","("+s+" and resn his)")        cmd.color("color_glu2","("+s+" and resn glu)")        cmd.color("color_asn2","("+s+" and resn asn)")        cmd.color("color_gln2","("+s+" and resn gln)")        cmd.color("color_asp2","("+s+" and resn asp)")        cmd.color("color_lys2","("+s+" and resn lys)")        cmd.color("color_arg2","("+s+" and resn arg)") cmd.extend('color_h2',color_h2)

将上面的脚本存储为color_h.py,在PyMOL界面运行File-Run-color_h.py,在命令行输入>PyMOl color_h- Show surface

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存