5 个学习建议,给机器学习和数据科学入门者的
(点击上方公众号,可快速关注)
英文:towardsdatascience,作者:Daniel Bourke编译:机器之心,参与:韩放、一鸣
都说做一件事情最好的时机就是「现在」,但是从何开始往往会难倒一大批人,更不用说是想要入门数据科学和机器学习的朋友了。本文是一篇科普扫盲文章,作者以初学者的视角,为同样想「入坑」的读者们提供了一些建议,还有一些可以获得的学习资源。
人工智能要素 (https://www.elementsofai.com/)—人工智能和机器学习主要概念概述。
Coursera 上的 Python 教程—(https://bit.ly/pythoneverybodycoursera) 从头学习 Python。
通过 freeCodeCamp 学习 Python (https://youtu.be/rfscVS0vtbw)—一个视频涵盖了 Python 所有主要概念。
Corey Schafer 的 Anaconda 教程 (https://youtu.be/YJC6ldI3hWk)—一个视频学会 Anaconda(数据科学和机器学习需要的配置环境)。
Dataquest 的新手 Jupyter Notebook 教程 (https://www.dataquest.io/blog/jupyter-notebook-tutorial/)—一篇文章学会启动和运行 Jupyter Notebook。
Corey Schafer 的 Jupyter Note 教程 (https://www.youtube.com/watch?v=HW29067qVWk)—一个视频学会使用 Jupyter Notebook。
Pandas 可以帮助你处理二维数据,类似 Excel 文件里的信息表,包含行和列。这类数据被称为结构化数据。
Numpy 可以帮助你进行数值计算。机器学习把你能想到的所有东西都转化成数字,进而在这些数字中寻找模式。
Matplotlib 可以帮助你绘制图形和可视化数据。理解表格中的一堆数字对人类来说可能很困难。我们更喜欢看到有一条线穿过的图。可视化可以更好得传达你的发现。
Cousera 上的 Python 应用数据科学 (http://bit.ly/courseraDS)—开始打磨数据科学方向的 Python 技能。
10 分钟入门 pandas (https://pandas.pydata.org/pandas-docs/stable/gettingstarted/10min.html)—快速概览 pandas 库及其部分最有用的函数。
Codebasics 的 Python pandas 教程 (https://youtu.be/CmorAWRsCAw)—该 YouTube 系列介绍了 pandas 的所有主要功能。
freeCodeCamp 的 NumPy 教程 (https://youtu.be/QUT1VHiLmmI)—一个 YouTube 视频学会 NumPy。
Sentdex 的 Matplotlib 教程 (https://www.youtube.com/watch?v=q7Bo_J8x_dw&list=PLQVvvaa0QuDfefDfXb9Yf0la1fPDKluPF)—YouTube 系列助你学会 Matplotlib 所有最有用的功能。
Data School 的基于 scikit-learn 的 Python 机器学习 (https://www.youtube.com/watch?v=elojMnjn4kk&list=PL5-da3qGB5ICeMbQuqbbCOQWcS6OYBr5A)—一个 YouTube 播放列表教你 scikit-learn 的所有主要函数。
Daniel Bourke 对探索性数据分析的简要介绍 (https://towardsdatascience.com/a-gentle-introduction-to-exploratory-data-analysis-f11d843b8184)—把你在上述两个步骤中学到的知识融合在一个项目中。提供代码和视频,助你开始第一个 Kaggle 竞赛。
Daniel Formosso 的基于 scikit-learn 的探索性数据分析笔记 (https://github.com/dformoso/sklearn-classification)—以上资源的更深入版本,附带了一个实践上述内容的端到端项目。
Cousera 上 Andrew Ng 的 deeplearning.ai (https://bit.ly/courseradl) (https://bit.ly/courseradl)—商业上最成功的从业者之一讲授的深度学习课程。
Jeremy Howard 的 fast.ai 深度学习课程 (https://course.fast.ai/) (https://bit.ly/courseradl)—工业界最好的实践者之一讲授的深度学习实际操作方法。
Daniel Bourke 的如何开始你自己的机器学习工程 (https://towardsdatascience.com/how-to-start-your-own-machine-learning-projects-4872a41e4e9c)—开始你自己的工程可能会很难,这篇文章可以给你一些指引。
Jeremy Howard 的 fast.ai 深度学习基础 (https://course.fast.ai/part2)—自上而下学习后,本课程将帮助你从下往上填补空白。
Andrew Trask 的 Grokking Deep Learning (https://amzn.to/2H497My)—这本书将教你如何从头开始构建神经网络,以及为什么你应该知道如何构建。
Daniel Bourke 推荐的机器学习书籍 (https://www.youtube.com/watch?v=7R08MPXxiFQ)—该 YouTube 视频整理了一些机器学习最佳书籍。
参考链接:https://towardsdatascience.com/5-beginner-friendly-steps-to-learn-machine-learning-and-data-science-with-python-bf69e211ade5
看完本文有收获?请转发分享给更多人
关注「大数据与机器学习文摘」,成为Top 1%
好文章,我在看❤️