查看原文
其他

ClickHouse 在爱奇艺实时数仓的应用

The following article is from 爱奇艺技术产品团队 Author 爱奇艺后台研发部

荐语:

本文详细叙述ClickHouse在爱奇艺视频生产实时数仓的应用:包括业务数据是如何通过 Spark / Spark Streaming 计算引擎处理,并将 HBase 作为维表数据存储,进行实时Join,最终写入ClickHouse,实现即席查询的。

众所周知,爱奇艺拥有海量视频,在视频生产过程中产生的上千QPS的实时数据、T级别的数据存储。要支持这样的数据进行即席查询和多个大表的JOIN,是爱奇艺视频生产团队大数据应用的难点。


具体来说有以下几点:
1)实时性的要求,需要实时的解决方案。2)生产数据更新频繁,OLAP 需支持更新。3)生产需要大表 Join 方案。码流属性(亿级,百G)和节目属性(亿级,百G)经常放在一起做分析。 此外,爱奇艺视频生产数据还有一个特点,数据来源于OLTP 数据中台,其数据持久化在 Mongo,消息变动写入 Kafka, Kafka中:curData 是当前更新数据,oriData是历史为变动数据,这样的结构化数据为配置化开发提供了可能。
爱奇艺视频生产团队负责爱奇艺的视频生产,涵盖“素材、成片、运营流、图片”各个方面,并围绕生产进行了中台化建设、监控建设、数据报表建设等,旨在为视频生产提效,节省编辑精力,更快更好的产出优质视频。
针对以上痛点,爱奇艺视频生产团队进行了一系列努力。本文将详细叙述ClickHouse在爱奇艺视频生产实时数仓的应用:包括业务数据是如何通过 Spark / Spark Streaming 计算引擎处理,并将 HBase 作为维表数据存储,进行实时Join,最终写入ClickHouse,实现即席查询的。
最终的建设成果也比较显著,原本报表开发周期由天级缩短到小时级,满足了频繁更新的实时、离线可 Join 的报表需求。


01

背景及发展历史

选择Spark+ClickHouse实时数仓建设方案,基于爱奇艺视频生产的历史发展阶段及数据特点。
随着各种大数据技术蓬勃发展,爱奇艺视频生产的数据业务经历了两个阶段。
早期阶段一:团队基于公司内部 BabelX 离线数据同步工具,引入 Hive 技术,来做报表开发。
在阶段一中,缺点是每天跑全量数据,成本高,实时性低,修改纬度字段时,整条链路都要修改;ETL 完全依赖 Hive 内置函数,可复用性低,运维成本高。
早期阶段二:随着生产数据增多,Mysql 提供的可视化查询性能遇到瓶颈,且实效性要求提高,数据报表进入了第二阶段,引进 ClickHouse 进行实时报表开发。
在引进clickHouse的过程中,我们也研究了业界如druid、kudu等其他方案,结论是:Druid、kudu在用户视频数少,时间跨度大的情况下,性能表现还不错;当用户视频数超过1千万后,Druid会受聚合影响,速度大幅度降低,甚至会出现超时的情况。最终我们选择了clickHouse,通过它的引擎的选择,我们还支持了频繁的数据更新。
这个阶段其缺点是:不支持连表操作,业务库仅支持 JDBC/ODBC 类型,Merge引擎不支持更新,Mysql导入 ClickHouse再Truncate,期间数据存在丢失。
在此基础上,我们完善系统,最终形成了如下的新的架构体系。

02

Spark+ClickHouse实时数仓

话不多说,先上架构图
整体结构

ClickHouse 是面向列的数据库管理系统(DBMS),用于对查询进行联机分析处理(OLAP)。由俄罗斯IT公司 Yandex 为 Yandex.Metrica 网络分析服务开发的。允许分析实时更新的数据,该系统以高性能为目标,且储存明细数据。
Spark 是用于大规模数据处理的统一分析引擎,高效的支撑更多计算模式,包括交互式查询和流处理。一个主要特点是能够在内存中进行计算,即使依赖磁盘进行复杂的运算,Spark依然比MapReduce更加高效。Spark Streaming 是核心 Spark API 的扩展,可实现实时数据流的可伸缩,高吞吐量,容错流处理。其基于微批,和其他基于“一次处理一条记录” 架构的系统相比, 它的延迟会相对高一些,但是吞吐量也会有一定优势。而批量插入 ClickHouse,又是 ClickHouse 所推崇的。
结合 Spark/Spark Streaming 与 ClickHouse 的特性,这一方案优势也就显而易见了:
ClickHouse 支持更新且速度极快;Spark Streaming 微批,更适合写入clickHouse。
具体建设过程主要分为三个部分。

离线数据加工


首先通过 Spark计算引擎,将 mongo 数据例行全量导入 Hive(担心业务库稳定性)。然后通过 Spark 计算引擎, 将 Hive 数据例行进行 ETL 处理,并离线导入 ClickHouse。

实时数据加工


历史存量数据的处理是通过 Spark 计算引擎,将 Mongo 数据写入 ClickHouse(只执行一次,可以直接从业务库导。因为例行导入 Hive 表本身就是我们在做)。实时数据的处理就是Spark技术引擎直接处理 Kafka 消息写入 ClickHouse 了。如果不需要历史存量数据,只需要消费 Kafka,实时计算导入 ClickHouse 就可以了。具体实时架构如下:
实时方案流程图
这里离线数据和实时数据连接点需要注意一下:ReplacingMergeTree 引擎由于幂等性质,可将 Kafka offset 向前多重置一些,保证最少一次。其他引擎存在误差数据。除非 Kafka 能够重放 Mongo 中历史所有数据。

Join需求


存在 Join 需求时,由于两个表目前都是百G的存储,使用Redis、CB内存太浪费,我们最终选择了使用HBase。以 HBase 作为纬度表,在 Spark 计算引擎中,进行合并处理,并写入事实表。
大表Join方案流程图
除了以上工作,这里有一些注意事项:
1. 实时导入 ClickHouse,维表数据必须早于事实表产生。2. 增量离线同步或者实时同步 ClickHouse 时,需保证 维表数据基本不变 或者 维表数据变化后,实时、离线增量数据也会发生变化。3. 否则维表变化不会在 ClickHouse 输出表中体现。
看到这里,整体架构已经很清晰了。那么如何选择 ClickHouse引擎来支持频繁更新呢?

03

ClickHouse支持频繁更新
针对频繁更新请求,ClickHouse 可以选择 ReplacingMergeTree 和 VersionedCollapsingMergeTree 引擎:
ReplacingMergeTree(覆盖更新)以 id 作为主键,会删除相同的重复项。不保证没有重复的数据出现。
VersionedCollapsingMergeTree(折叠更新)在数据块合并算法中添加了折叠行逻辑。
针对离线数据,有两种选择方案。
方案一是用 ReplacingMergeTree 引擎的增量同步方案:先用 Spark 计算引擎将 Mongo 数据例行同步到 Hive,再用 Spark 计算引擎消费 Hive 增量数据写入 ClickHouse。其优点是增量同步,压力小。缺点是 Join 时,增量离线同步,需保证 维表数据基本不变 或者 维表数据变化后,实时表数据也会发生变化。否则维表变化不会再事实表中体现。
方案二是用 MergeTree 引擎的全量同步方案:先用 Spark 计算引擎将 Mongo 数据定时同步到 Hive,然后Truncate ClickHouse 表,最后使用Spark 消费 Hive 近 N 天数据写入 ClickHouse。其优点是可解决方案一 Join 时问题。缺点是全量同步,仅保存近 N 天数据,压力大。
针对实时数据,也有两种选择方案。


方案一是用 VersionedCollapsingMergeTree 引擎的增量同步方案:先用 Spark 计算引擎将 Mongo 存量数据一次性同步到 ClickHouse,再重置 Kafka 消费位置,将实时数据同步到 ClickHouse。其优点是即使有重复数据,也可使用变种 SQL 避免数据误差。缺点是实时数据强依赖 OLTP 数据中台 提供的 Kafka 消息(oriData、currData)准确性,且离线和实时数据连接点,存在无法折叠现象。
方案二是用 ReplacingMergeTree 引擎的增量同步方案:先用 Spark 计算引擎将 Mongo 存量数据一次性同步到 ClickHouse,再重置 Kafka 消费位置,将实时数据同步到ClickHouse ReplacingMergeTree。其优点是相比与 VersionedCollapsingMergeTree 更简单,且离线和实时数据连接点,不存在异常。缺点是不保证没有重复的数据出现。
接下来介绍下数据的准确性保证。

04

数据准确性保证
离线数据的准确性保证方面,我们主要做了以下两点。
首先是离线重跑数据时,如果 ClickHouse 是 Merge 引擎,重跑时将 Drop 重跑分区。然后是离线全量重跑近 N 天数据,执行 Spark 任务前会先 Truncate 表。
而实时数据的数据准确性保证,首先是 在 Spark 消费 Kafka 时,offset不自动提交,待本次微批数据的所有业务逻辑均处理完成后,再手动提交 offset,以此达到最少一次消费的目的,保证不会丢数据,而 ClickHouse ReplacingMergeTree 引擎写入是幂等的。然后针对 ClickHouse,每间隔 time 时间主动进行 Merge,考虑服务器压力,只 Merge 最近 time * 2 时间段内修改的分区。目前 time 是 5 min。如下图:
自动Merge示意图
到此针对实时数仓的架构细节已经基本讲完了。

05

配置化开发 
然而,面对源源而来的报表需求,每个需求花费几天去开发,不仅耗费人力,而且重复的工作也让开发人员无法抽身。考虑到爱艺奇视频生产都是结构化数据,这就为配置化开发提供了可能。
整个过程主要用到了程序参数解析器 - Apache Commons CLI,一款开源的命令行解析工具。它可以帮助开发者快速构建启动命令,并且帮助你组织命令的参数、以及输出列表等。
参数解析器结构图

06

价值与规划
爱奇艺视频生产实时数仓目前的建设方案完成后,我们基本实现了代码 0 开发,原本报表开发周期由天级缩短到小时级。满足频繁更新的实时、离线可 Join 的报表需求。目前已支持 4 个离线报表任务,3 个实时报表任务,其中 1 个离线 Join 需求,1 个实时 Join 需求,后续可能更多。
后续我们会在爱奇艺视频生产平台提供页面化操作,将同步工具产品化,首先与 Hive、HBase、ClickHouse 等打通,自动建表,然后将任务创建、运行、监控状态逻辑通过调度自动化 。通过技术创新去支持和落地新的业务场景,继续推动爱奇艺的数据和产品向着实时化的方向发展。

- EOF -

推荐阅读  点击标题可跳转

1、一文了解 ClickHouse 的向量化执行

2、同程旅行 Hadoop 集群跨机房迁移实践

3、Uber 是如何提高 HDFS I/O 利用率的


看完本文有收获?请转发分享给更多人

关注「大数据与机器学习文摘」,成为Top 1%

点赞和在看就是最大的支持❤️

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存