Hive 高频面试题 30 题
一、Hive面试题
1、hive内部表和外部表的区别
未被external修饰的是内部表,被external修饰的为外部表。
区别:
内部表数据由Hive自身管理,外部表数据由HDFS管理;
内部表数据存储的位置是hive.metastore.warehouse.dir(默认:/user/hive/warehouse), 外部表数据的存储位置由自己制定(如果没有LOCATION,Hive将在HDFS上 的/user/hive/warehouse文件夹下以外部表的表名创建一个文件夹,并将属于这个表的数据存 放在这里);
删除内部表会直接删除元数据(metadata)及存储数据;删除外部表仅仅会删除元数据,HDFS上的文件并不会被删除。
2、Hive有索引吗
Hive支持索引(3.0版本之前),但是Hive的索引与关系型数据库中的索引并不相同。并且 Hive索引提供的功能很有限,效率也并不高,因此Hive索引很少使用。
索引适用的场景:
适用于不更新的静态字段。以免总是重建索引数据。每次建立、更新数据后,都要重建索 引以构建索引表。
3、运维如何对hive进行调度
将hive的sql定义在脚本当中;
使用azkaban或者oozie进行任务的调度;
监控任务调度页面。
4、ORC、Parquet等列式存储的优点
- ORC:ORC文件是自描述的,它的元数据使用Protocol Buffers序列化,文件中的数据尽可能的压缩以降低存储空间的消耗;以二进制方式存储,不可以直接读取;自解析,包含许多元数据,这些元数据都是同构ProtoBuffer进行序列化的;会尽可能合并多个离散的区间尽可能的减少I/O次数;在新版本的ORC中也加入了对Bloom Filter的支持,它可以进一 步提升谓词下推的效率,在Hive 1.2.0版本以后也加入了对此的支 持。
- Parquet:Parquet支持嵌套的数据模型,类似于Protocol Buffers,每一个数据模型的schema包含多个字段,每一个字段有三个属性:重复次数、数据类型和字段名;Parquet中没有Map、Array这样的复杂数据结构,但是可以通过repeated和group组合来实现;通过Striping/Assembly算法,parquet可以使用较少的存储空间表示复杂的嵌套格式,并且通常Repetition level和Definition level都是较小的整数值,可以通过RLE算法对其进行压缩,进一步降低存储空间;Parquet文件以二进制方式存储,不可以直接读取和修改,Parquet文件是自解析的,文件中包括该文件的数据和元数据。
5、数据建模用的哪些模型
星型模型
星形模式(Star Schema)是最常用的维度建模方式。星型模式是以事实表为中心,所有的维度表直接连接在事实表上,像星星一样。星形模式的维度建模由一个事实表和一组维表成,且具有以下特点:
a. 维表只和事实表关联,维表之间没有关联;
b. 每个维表主键为单列,且该主键放置在事实表中,作为两边连接的外键;
c. 以事实表为核心,维表围绕核心呈星形分布。
雪花模型
雪花模式(Snowflake Schema)是对星形模式的扩展。雪花模式的维度表可以拥有其他维度表的,虽然这种模型相比星型更规范一些,但是由于这种模型不太容易理解,维护成本比较高,而且性能方面需要关联多层维表,性能比星型模型要低。
星座模型
星座模式是星型模式延伸而来,星型模式是基于一张事实表的,而星座模式是基于多张事实表的,而且共享维度信息。前面介绍的两种维度建模方法都是多维表对应单事实表,但在很多时候维度空间内的事实表不止一个,而一个维表也可能被多个事实表用到。在业务发展后期,绝大部分维度建模都采用的是星座模式。
6、为什么要对数据仓库分层
用空间换时间,通过大量的预处理来提升应用系统的用户体验(效率),因此数据仓库会 存在大量冗余的数据。如果不分层的话,如果源业务系统的业务规则发生变化将会影响整个数据清洗过程,工作量巨大。
通过数据分层管理可以简化数据清洗的过程,因为把原来一步的工作分到了多个步骤去完成,相当于把一个复杂的工作拆成了多个简单的工作,把一个大的黑盒变成了一个白盒,每一层的处理逻辑都相对简单和容易理解,这样我们比较容易保证每一个步骤的正确性,当数据发生错误的时候,往往我们只需要局部调整某个步骤即可。
7、使用过Hive解析JSON串吗
Hive处理json数据总体来说有两个方向的路走:
a.将json以字符串的方式整个入Hive表,然后通过使用UDF函数解析已经导入到hive中的数据,比如使用LATERAL VIEW json_tuple的方法,获取所需要的列名。
b.在导入之前将json拆成各个字段,导入Hive表的数据是已经解析过的。这将需要使用第三方的 SerDe。
8、sort by 和 order by 的区别
order by 会对输入做全局排序,因此只有一个reducer(多个reducer无法保证全局有序)只有一个reducer,会导致当输入规模较大时,需要较长的计算时间。
sort by不是全局排序,其在数据进入reducer前完成排序. 因此,如果用sort by进行排序,并且设置mapred.reduce.tasks>1, 则sort by只保证每个reducer的输出有序,不保证全局有序。
9、数据倾斜怎么解决
空值引发的数据倾斜
解决方案:
第一种:可以直接不让null值参与join操作,即不让null值有shuffle阶段第二种:因为null值参与shuffle时的hash结果是一样的,那么我们可以给null值随机赋值,这样它们的hash结果就不一样,就会进到不同的reduce中:
不同数据类型引发的数据倾斜
解决方案:
如果key字段既有string类型也有int类型,默认的hash就都会按int类型来分配,那我们直接把int类型都转为string就好了,这样key字段都为string,hash时就按照string类型分配了:
不可拆分大文件引发的数据倾斜
解决方案:
这种数据倾斜问题没有什么好的解决方案,只能将使用GZIP压缩等不支持文件分割的文件转为bzip和zip等支持文件分割的压缩方式。
所以,我们在对文件进行压缩时,为避免因不可拆分大文件而引发数据读取的倾斜,在数据压缩的时候可以采用bzip2和Zip等支持文件分割的压缩算法。
数据膨胀引发的数据倾斜
解决方案:
在Hive中可以通过参数 hive.new.job.grouping.set.cardinality 配置的方式自动控制作业的拆解,该参数默认值是30。表示针对grouping sets/rollups/cubes这类多维聚合的操作,如果最后拆解的键组合大于该值,会启用新的任务去处理大于该值之外的组合。如果在处理数据时,某个分组聚合的列有较大的倾斜,可以适当调小该值。
表连接时引发的数据倾斜
解决方案:
通常做法是将倾斜的数据存到分布式缓存中,分发到各个Map任务所在节点。在Map阶段完成join操作,即MapJoin,这避免了 Shuffle,从而避免了数据倾斜。
确实无法减少数据量引发的数据倾斜
解决方案:
这类问题最直接的方式就是调整reduce所执行的内存大小。
调整reduce的内存大小使用mapreduce.reduce.memory.mb这个配置。
10、Hive 小文件过多怎么解决
使用 hive 自带的 concatenate 命令,自动合并小文件
调整参数减少Map数量
减少Reduce的数量
使用hadoop的archive将小文件归档
11、Hive优化有哪些
数据存储及压缩
通过调参优化
有效地减小数据集将大表拆分成子表;结合使用外部表和分区表
SQL优化
二、Hive高频面试点集合
1、Hive的两张表关联,使用MapReduce怎么实现?
如果其中有一张表为小表,直接使用map端join的方式(map端加载小表)进行聚合。
如果两张都是大表,那么采用联合key,联合key的第一个组成部分是join on中的公共字段,第二部分是一个flag,0代表表A,1代表表B,由此让Reduce区分客户信息和订单信息;在Mapper中同时处理两张表的信息,将join on公共字段相同的数据划分到同一个分区中,进而传递到一个Reduce中,然后在Reduce中实现聚合。
2、请谈一下Hive的特点,Hive和RDBMS有什么异同?
hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析,但是Hive不支持实时查询。
Hive与关系型数据库的区别:
3、请说明hive中 Sort By,Order By,Cluster By,Distrbute By各代表什么意思?
Order by:会对输入做全局排序,因此只有一个reducer(多个reducer无法保证全局有序)。只有一个reducer,会导致当输入规模较大时,需要较长的计算时间。
Sort by:不是全局排序,其在数据进入reducer前完成排序。1
Distribute by:按照指定的字段对数据进行划分输出到不同的reduce中。
Cluster by:除了具有 distribute by 的功能外还兼具 sort by 的功能。
4、写出Hive中split、coalesce及collect_list函数的用法(可举例)?
split将字符串转化为数组,即:split('a,b,c,d' , ',') ==> ["a","b","c","d"]。
coalesce(T v1, T v2, …) 返回参数中的第一个非空值;如果所有值都为 NULL,那么返回NULL。
collect_list列出该字段所有的值,不去重 => select collect_list(id) from table。
5、 Hive有哪些方式保存元数据,各有哪些特点?
Hive支持三种不同的元存储服务器,分别为:内嵌式元存储服务器、本地元存储服务器、远程元存储服务器,每种存储方式使用不同的配置参数。
内嵌式元存储主要用于单元测试,在该模式下每次只有一个进程可以连接到元存储,Derby是内嵌式元存储的默认数据库。
在本地模式下,每个Hive客户端都会打开到数据存储的连接并在该连接上请求SQL查询。
在远程模式下,所有的Hive客户端都将打开一个到元数据服务器的连接,该服务器依次查询元数据,元数据服务器和客户端之间使用Thrift协议通信。
6、Hive内部表和外部表的区别?
创建表时:创建内部表时,会将数据移动到数据仓库指向的路径;若创建外部表,仅记录数据所在的路径,不对数据的位置做任何改变。
删除表时:在删除表的时候,内部表的元数据和数据会被一起删除, 而外部表只删除元数据,不删除数据。这样外部表相对来说更加安全些,数据组织也更加灵活,方便共享源数据。
7、Hive的函数:UDF、UDAF、UDTF的区别?
UDF:单行进入,单行输出
UDAF:多行进入,单行输出
UDTF:单行输入,多行输出
8、所有的Hive任务都会有MapReduce的执行吗?
不是,从Hive0.10.0版本开始,对于简单的不需要聚合的类似SELECT from
LIMIT n语句,不需要起MapReduce job,直接通过Fetch task获取数据。
9、说说对Hive桶表的理解?
桶表是对数据某个字段进行哈希取值,然后放到不同文件中存储。
数据加载到桶表时,会对字段取hash值,然后与桶的数量取模。把数据放到对应的文件中。物理上,每个桶就是表(或分区)目录里的一个文件,一个作业产生的桶(输出文件)和reduce任务个数相同。
桶表专门用于抽样查询,是很专业性的,不是日常用来存储数据的表,需要抽样查询时,才创建和使用桶表。
12、Hive 中的压缩格式TextFile、SequenceFile、RCfile 、ORCfile各有什么区别?
1、TextFile
默认格式,存储方式为行存储,数据不做压缩,磁盘开销大,数据解析开销大。可结合Gzip、Bzip2使用(系统自动检查,执行查询时自动解压),但使用这种方式,压缩后的文件不支持split,Hive不会对数据进行切分,从而无法对数据进行并行操作。并且在反序列化过程中,必须逐个字符判断是不是分隔符和行结束符,因此反序列化开销会比SequenceFile高几十倍。
2、SequenceFile
SequenceFile是Hadoop API提供的一种二进制文件支持,存储方式为行存储,其具有使用方便、可分割、可压缩的特点。
SequenceFile支持三种压缩选择:NONE,RECORD,BLOCK。Record压缩率低,一般建议使用BLOCK压缩。
优势是文件和hadoop api中的MapFile是相互兼容的
3、RCFile
存储方式:数据按行分块,每块按列存储。结合了行存储和列存储的优点:
首先,RCFile 保证同一行的数据位于同一节点,因此元组重构的开销很低;
其次,像列存储一样,RCFile 能够利用列维度的数据压缩,并且能跳过不必要的列读取;
4、ORCFile
存储方式:数据按行分块 每块按照列存储。
压缩快、快速列存取。
效率比rcfile高,是rcfile的改良版本。
小结:
相比TEXTFILE和SEQUENCEFILE,RCFILE由于列式存储方式,数据加载时性能消耗较大,但是具有较好的压缩比和查询响应。
数据仓库的特点是一次写入、多次读取,因此,整体来看,RCFILE相比其余两种格式具有较明显的优势。
13、Hive表关联查询,如何解决数据倾斜的问题?
1)倾斜原因:map输出数据按key Hash的分配到reduce中,由于key分布不均匀、业务数据本身的特、建表时考虑不周、等原因造成的reduce 上的数据量差异过大。(1)key分布不均匀; (2)业务数据本身的特性; (3)建表时考虑不周; (4)某些SQL语句本身就有数据倾斜;
如何避免:对于key为空产生的数据倾斜,可以对其赋予一个随机值。
2)解决方案
(1)参数调节: hive.map.aggr = true hive.groupby.skewindata=true
有数据倾斜的时候进行负载均衡,当选项设定位true,生成的查询计划会有两个MR Job。第一个MR Job中,Map的输出结果集合会随机分布到Reduce中,每个Reduce做部分聚合操作,并输出结果,这样处理的结果是相同的Group By Key有可能被分发到不同的Reduce中,从而达到负载均衡的目的;第二个MR Job再根据预处理的数据结果按照Group By Key 分布到 Reduce 中(这个过程可以保证相同的 Group By Key 被分布到同一个Reduce中),最后完成最终的聚合操作。
(2)SQL 语句调节:
① 选用join key分布最均匀的表作为驱动表。做好列裁剪和filter操作,以达到两表做join 的时候,数据量相对变小的效果。 ② 大小表Join: 使用map join让小的维度表(1000 条以下的记录条数)先进内存。在map端完成reduce。 ③ 大表Join大表: 把空值的key变成一个字符串加上随机数,把倾斜的数据分到不同的reduce上,由于null 值关联不上,处理后并不影响最终结果。 ④ count distinct大量相同特殊值: count distinct 时,将值为空的情况单独处理,如果是计算count distinct,可以不用处理,直接过滤,在最后结果中加1。如果还有其他计算,需要进行group by,可以先将值为空的记录单独处理,再和其他计算结果进行union。
14、Fetch抓取
Fetch抓取是指,Hive中对某些情况的查询可以不必使用MapReduce计算。例如:SELECT * FROM employees;在这种情况下,Hive可以简单地读取employee对应的存储目录下的文件,然后输出查询结果到控制台。
在hive-default.xml.template文件中hive.fetch.task.conversion默认是more,老版本hive默认是minimal,该属性修改为more以后,在全局查找、字段查找、limit查找等都不走mapreduce。
15、小表、大表Join
将key相对分散,并且数据量小的表放在join的左边,这样可以有效减少内存溢出错误发生的几率;再进一步,可以使用Group让小的维度表(1000条以下的记录条数)先进内存。在map端完成reduce。
实际测试发现:新版的hive已经对小表JOIN大表和大表JOIN小表进行了优化。小表放在左边和右边已经没有明显区别。
16、大表Join大表
1)空KEY过滤 有时join超时是因为某些key对应的数据太多,而相同key对应的数据都会发送到相同的reducer上,从而导致内存不够。此时我们应该仔细分析这些异常的key,很多情况下,这些key对应的数据是异常数据,我们需要在SQL语句中进行过滤。例如key对应的字段为空。2)空key转换 有时虽然某个key为空对应的数据很多,但是相应的数据不是异常数据,必须要包含在join的结果中,此时我们可以表a中key为空的字段赋一个随机的值,使得数据随机均匀地分不到不同的reducer上。
17、Group By
默认情况下,Map阶段同一Key数据分发给一个reduce,当一个key数据过大时就倾斜了。
并不是所有的聚合操作都需要在Reduce端完成,很多聚合操作都可以先在Map端进行部分聚合,最后在Reduce端得出最终结果。1)开启Map端聚合参数设置 (1)是否在Map端进行聚合,默认为True hive.map.aggr = true (2)在Map端进行聚合操作的条目数目 hive.groupby.mapaggr.checkinterval = 100000 (3)有数据倾斜的时候进行负载均衡(默认是false) hive.groupby.skewindata = true
当选项设定为 true,生成的查询计划会有两个MR Job。第一个MR Job中,Map的输出结果会随机分布到Reduce中,每个Reduce做部分聚合操作,并输出结果,这样处理的结果是相同的Group By Key有可能被分发到不同的Reduce中,从而达到负载均衡的目的;
第二个MR Job再根据预处理的数据结果按照Group By Key分布到Reduce中(这个过程可以保证相同的Group By Key被分布到同一个Reduce中),最后完成最终的聚合操作。
18、Count(Distinct) 去重统计
数据量小的时候无所谓,数据量大的情况下,由于COUNT DISTINCT操作需要用一个Reduce Task来完成,这一个Reduce需要处理的数据量太大,就会导致整个Job很难完成,一般COUNT DISTINCT使用先GROUP BY再COUNT的方式替换
尽量避免笛卡尔积,join的时候不加on条件,或者无效的on条件,Hive只能使用1个reducer来完成笛卡尔积
转自:公号-大数据技术与架构
- EOF -
看完本文有收获?请转发分享给更多人
关注「大数据与机器学习文摘」,成为Top 1%
点赞和在看就是最大的支持❤️