其他
用ggplot2画了一个我也叫不上名的炫酷图表
今日心血来潮,看到一幅制作精良的图表,就想使用ggplot2代码实现,虽然不知道该怎么称呼这个图表,但是能顺利做出来也是很有成就感的!
加载数据包
library("ggplot2")
library("grid")
library("showtext")
library("Cairo")
font.add("myfont","msyh.ttc")
构造图形数据源
mydata<-data.frame(
id=1:13,
class=rep_len(1:4, length=13),
Label=c("Events","Lead List","Partner","Markeiting & Advertising","Tradeshows","Paid Search","Webinar","Emial Campaign","Sales generated","Website","Other","Facebook/Twitter/\nOther Social","Employee & Customer\nReferrals"),
Value=c(7.6,15.5,17.9,21.8,29.6,29.7,32.7,43.0,57.5,61.4,67.4,68.6,68.7)
)
可视化过程:
第一步:制作基本柱形图:
(这里我用一个序列作为 占位遮挡住了底部的堆积柱形图)
ggplot(mydata)+
geom_col(aes(x=id,y=Value/2+150,fill=factor(class)),colour=NA,width=1)+
geom_col(aes(x=id,y=150-Value/2),fill="white",colour="white",width=1)+
scale_x_continuous(limits=c(0,26),expand=c(0,0))
第二步:使用极坐标转换:
ggplot(mydata)+
geom_col(aes(x=id,y=Value/2+150,fill=factor(class)),colour=NA,width=1)+
geom_col(aes(x=id,y=150-Value/2),fill="white",colour="white",width=1)+
scale_x_continuous(limits=c(0,26),expand=c(0,0))+
coord_polar(theta = "x",start=-14.275, direction = 1)
第三步:对颜色搭配和主题进行修饰:
ggplot(mydata)+
geom_col(aes(x=id,y=Value/2+150,fill=factor(class)),colour=NA,width=1)+
geom_col(aes(x=id,y=150-Value/2),fill="white",colour="white",width=1)+
scale_x_continuous(limits=c(0,26),expand=c(0,0))+
coord_polar(theta = "x",start=-14.275, direction = 1)+
scale_fill_manual(values=c("#31A2CE","#DDB925","#3F9765","#C84F44"),guide=FALSE)+
theme_void()
第四步:修饰剩余文本元素:
p<-ggplot()+
geom_col(data=mydata,aes(x=id,y=Value/2+150,fill=factor(class)),colour=NA,width=1)+
geom_col(data=mydata,aes(x=id,y=150-Value/2),fill="white",colour="white",width=1)+
geom_line(data=NULL,aes(x=rep(c(.5,13.5),2),y=rep(c(126,174),each=2),group=factor(rep(1:2,each=2))),linetype=2,size=.25)+
geom_text(data=mydata,aes(x=id,y=ifelse(id<11,160,125),label=Label),size=3.5,hjust=0.5)+
geom_text(data=mydata,aes(x=id,y=ifelse(id<11,185,150),label=paste0(Value,"%")),hjust=.5,size=4.5)+
scale_x_continuous(limits=c(0,26),expand=c(0,0))+
coord_polar(theta = "x",start=-14.275, direction = 1)+
scale_fill_manual(values=c("#31A2CE","#DDB925","#3F9765","#C84F44"),guide=FALSE)+
theme_void();p
第五步:精修图表
#图表标题、副标题title="Events,Lead Lists and partners-\nmore likely be colosed-lost"content="Marketing events may by fun, but they create\nlousy sales opprunities.When analyzing share\nof closed-won vs.closed-lost opportunities,\nevents,leads lists and partners seem to provide the\nworst performance,while refreals and social\nprovide the best performance."
#图形输出:setwd("E:/数据可视化/R/R语言学习笔记/数据可视化/ggplot2/优秀R语言案例")
CairoPNG(file="polar_bar.png",width=1200,height=900)
showtext.begin()
grid.newpage()
pushViewport(viewport(layout=grid.layout(6,8)))
vplayout<-function(x,y){viewport(layout.pos.row =x,layout.pos.col=y)}
print(p,vp=vplayout(1:6,1:8))
grid.text(label=title,x=.50,y=.6525,gp=gpar(col="black",fontsize=15,fontfamily="myfont",draw=TRUE,fontface="bold",just="left"))
grid.text(label=content,x=.50,y=.56,gp=gpar(col="black",fontsize=12,fontfamily="myfont",draw=TRUE,just="left"))
showtext.end()
dev.off()
备注:(以上图表标签是手动调整过位置的)
好了干货完了,下面是一波广告:
9月12日晚8~10点,本小编有一场关于ggplot2的微课,主要内容如下:
1、ggplot2图层语法的核心理念
2、ggplot函数与geom_xxx函数间的父子继承关系
3、美学映射参数写在ggplot函数内与写在geom_xxx内的差异
4、美学映射参数写在aes函数内部和写在aes函数外部的差异
5、颜色标度一共有几种类型和写法,在不同模块中是否能够共用
6、如何结合实际业务与引用场景进行颜色标度选择
7、多图层叠加时,如何解决颜色标度冲突的问题
8、分面函数的权限控制
9、主题框架与模块间的继承关系
10、主题函数更新与替换方案
11、图形输出与高清抗锯齿渲染
其实这些问题都是之前我学习过程中走过的弯路,随着练习的案例越来越多,这些问题一步步全都解决了,其实如果你能有心看完我的所有关于ggplot讲解部分,差不多这些问题也都能全部理解。
阅读原文报名: