查看原文
其他

字典对象的Pythonic用法:上篇

2018-02-06 刘志军 Python爱好者社区

作者:刘志军,6年+Python使用经验, 高级开发工程师,目前在互联网医疗行业从事Web系统构架工作

个人公众号:Python之禅(微信ID:vttalk)


字典对象在Python中作为最常用的数据结构之一,和数字、字符串、列表、元组并列为5大基本数据结构,字典中的元素通过键来存取,而非像列表一样通过偏移存取。笔者总结了字典的一些常用Pyhonic用法,这是字典的Pythonic用法的上篇

0. 使用 in/not in 检查 key 是否存在于字典

判断某个 key 是否存在于字典中时,一般初学者想到的方法是,先以列表的形式把字典所有键返回,再判断该key是否存在于键列表中:

  1.    dictionary = {}

  2.    keys = dictionary.keys()

  3.    for k in keys:

  4.        if key == k:

  5.            print True

  6.            break

更具Pythonic的用法是使用 in关键字来判断 key 是否 存在于字典中:

  1.    if key in dictionary:

  2.        print True

  3.    else:

  4.        print False

1. 使用 setdefault() 初始化字典键值

使用字典的时候经常会遇到这样一种应用场景:动态更新字典,像如下代码,如果 key 不在 dictionary 中那么就添加它并把它对应的值初始为空列表 [] ,然后把元素 append 到空列表中:

  1. dictionary = {}

  2. if "key" not in dictionary:

  3.    dictionary["key"] = []

  4. dictionary["key"].append("list_item")

尽管这段代码没有任何逻辑错误,但是我们可以使用 setdefault来实现更Pyhonic的写法:

  1. dictionary = {}

  2. dictionary.setdefault("key", []).append("list_item")

字典调用 setdefault 方法时,首先检查 key 是否存在,如果存在该方法什么也不做,如果不存在 setdefault 就会创建该 key,并把第二个参数 []作为 key 对应的值。

2. 使用 defaultdict() 初始化字典

初始化一个字典时,如果初始情况下希望所有 key 对应的值都是某个默认的初始值,比如有一批用户的信用积分都初始为100,现在想给 a 用户增加10分

  1. d = {}

  2. if 'a' not in d:

  3.    d['a'] = 100

  4. d['a'] += 10

同样这段代码也没任何问题,换成更pyhtonic的写法是:

  1. from collections import defaultdict

  2. d = defaultdict(lambda: 100)

  3. d['a'] += 10

defaultdict 是位于 collections 模块下,它是 dict 类的子类,语法结构是:

  1. class collections.defaultdict([default_factory[, ...]])

第一个参数 default_factory是一个工厂方法,每次初始化某个键的时候将会被调用,value就是 default_factory返回的值,剩下的参数和 dict()函数接收的参数一样

3. 使用 iteritems() 迭代大数据

迭代大数据字典时,如果是使用 items() 方法,那么在迭代之前,迭代器迭代前需要把数据完整地加载到内存,这种方式不仅处理非常慢而且浪费内存,下面代码约占1.6G内存(为什么是1.6G?可以参考:http://stackoverflow.com/questions/4279358/pythons-underlying-hash-data-structure-for-dictionaries

  1. d = {i: i * 2 for i in xrange(10000000)}

  2. for key, value in d.items():

  3.    print("{0} = {1}".format(key, value))

而使用 iteritem() 方法替换 items() ,最终实现的效果一样,但是消耗的内存降低50%,为什么差距那么大呢?因为 items() 返回的是一个 list,list 在迭代的时候会预先把所有的元素加载到内存,而 iteritem() 返回的一个迭代器(iterators),迭代器在迭代的时候,迭代元素逐个的生成。

  1. d = {i: i * 2 for i in xrange(10000000)}

  2. for key, value in d.iteritem():

  3.    print("{0} = {1}".format(key, value))


Python爱好者社区福利大放送!!!

扫码或者点击阅读原文,领取福利

扫码或者点击阅读原文,领取福利

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存