【翻译】《利用Python进行数据分析·第2版》第3章(上)Python的数据结构、函数和文件
作者:SeanCheney Python爱好者社区专栏作者
简书专栏:https://www.jianshu.com/u/130f76596b02
前文传送门:
【翻译】《利用Python进行数据分析·第2版》第2章(上)Python语法基础,IPython和Jupyter
【翻译】《利用Python进行数据分析·第2版》第2章(中)Python语法基础,IPython和Jupyter
【翻译】《利用Python进行数据分析·第2版》第2章(下)Python语法基础,IPython和Jupyter
本章讨论Python的内置功能,这些功能本书会用到很多。虽然扩展库,比如pandas和Numpy,使处理大数据集很方便,但它们是和Python的内置数据处理工具一同使用的。
我们会从Python最基础的数据结构开始:元组、列表、字典和集合。然后会讨论创建你自己的、可重复使用的Python函数。最后,会学习Python的文件对象,以及如何与本地硬盘交互。
3.1 数据结构和序列
Python的数据结构简单而强大。通晓它们才能成为熟练的Python程序员。
元组
元组是一个固定长度,不可改变的Python序列对象。创建元组的最简单方式,是用逗号分隔一列值:
In [1]: tup = 4, 5, 6 In [2]: tup Out[2]: (4, 5, 6
当用复杂的表达式定义元组,最好将值放到圆括号内,如下所示:
In [3]: nested_tup = (4, 5, 6), (7, 8) In [4]: nested_tup Out[4]: ((4, 5, 6), (7, 8))
用tuple
可以将任意序列或迭代器转换成元组:
In [5]: tuple([4, 0, 2]) Out[5]: (4, 0, 2) In [6]: tup = tuple('string') In [7]: tup Out[7]: ('s', 't', 'r', 'i', 'n', 'g')
可以用方括号访问元组中的元素。和C、C++、JAVA等语言一样,序列是从0开始的:
In [8]: tup[0] Out[8]: 's'
元组中存储的对象可能是可变对象。一旦创建了元组,元组中的对象就不能修改了:
In [9]: tup = tuple(['foo', [1, 2], True]) In [10]: tup[2] = False --------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-10-c7308343b841> in <module>() ----> 1 tup[2] = False TypeError: 'tuple' object does not support item assignment
如果元组中的某个对象是可变的,比如列表,可以在原位进行修改:
In [11]: tup[1].append(3) In [12]: tup Out[12]: ('foo', [1, 2, 3], True)
可以用加号运算符将元组串联起来:
In [13]: (4, None, 'foo') + (6, 0) + ('bar',) Out[13]: (4, None, 'foo', 6, 0, 'bar')
元组乘以一个整数,像列表一样,会将几个元组的复制串联起来:
In [14]: ('foo', 'bar') * 4 Out[14]: ('foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'bar')
对象本身并没有被复制,只是引用了它。
拆分元组
如果你想将元组赋值给类似元组的变量,Python会试图拆分等号右边的值:
In [15]: tup = (4, 5, 6) In [16]: a, b, c = tup In [17]: b Out[17]: 5
即使含有元组的元组也会被拆分:
In [18]: tup = 4, 5, (6, 7) In [19]: a, b, (c, d) = tup In [20]: d Out[20]: 7
使用这个功能,你可以很容易地替换变量的名字,其它语言可能是这样:
tmp = a a = b b = tmp
但是在Python中,替换可以这样做:
In [21]: a, b = 1, 2 In [22]: a Out[22]: 1 In [23]: b Out[23]: 2 In [24]: b, a = a, b In [25]: a Out[25]: 2 In [26]: b Out[26]: 1
变量拆分常用来迭代元组或列表序列:
In [27]: seq = [(1, 2, 3), (4, 5, 6), (7, 8, 9)] In [28]: for a, b, c in seq: ....: print('a={0}, b={1}, c={2}'.format(a, b, c)) a=1, b=2, c=3 a=4, b=5, c=6 a=7, b=8, c=9
另一个常见用法是从函数返回多个值。后面会详解。
Python最近新增了更多高级的元组拆分功能,允许从元组的开头“摘取”几个元素。它使用了特殊的语法*rest
,这也用在函数签名中以抓取任意长度列表的位置参数:
In [29]: values = 1, 2, 3, 4, 5 In [30]: a, b, *rest = values In [31]: a, b Out[31]: (1, 2) In [32]: rest Out[32]: [3, 4, 5]
rest
的部分是想要舍弃的部分,rest的名字不重要。作为惯用写法,许多Python程序员会将不需要的变量使用下划线:
In [33]: a, b, *_ = values
tuple方法
因为元组的大小和内容不能修改,它的实例方法都很轻量。其中一个很有用的就是count
(也适用于列表),它可以统计某个值得出现频率:
In [34]: a = (1, 2, 2, 2, 3, 4, 2) In [35]: a.count(2) Out[35]: 4
列表
与元组对比,列表的长度可变、内容可以被修改。你可以用方括号定义,或用list
函数:
In [36]: a_list = [2, 3, 7, None] In [37]: tup = ('foo', 'bar', 'baz') In [38]: b_list = list(tup) In [39]: b_list Out[39]: ['foo', 'bar', 'baz'] In [40]: b_list[1] = 'peekaboo' In [41]: b_list Out[41]: ['foo', 'peekaboo', 'baz']
列表和元组的语义接近,在许多函数中可以交叉使用。
list
函数常用来在数据处理中实体化迭代器或生成器:
In [42]: gen = range(10) In [43]: gen Out[43]: range(0, 10) In [44]: list(gen) Out[44]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
添加和删除元素
可以用append
在列表末尾添加元素:
In [45]: b_list.append('dwarf') In [46]: b_list Out[46]: ['foo', 'peekaboo', 'baz', 'dwarf']
insert
可以在特定的位置插入元素:
In [47]: b_list.insert(1, 'red') In [48]: b_list Out[48]: ['foo', 'red', 'peekaboo', 'baz', 'dwarf']
插入的序号必须在0和列表长度之间。
警告:与
append
相比,insert
耗费的计算量大,因为对后续元素的引用必须在内部迁移,以便为新元素提供空间。如果要在序列的头部和尾部插入元素,你可能需要使用collections.deque
,一个双尾部队列。
insert的逆运算是pop,它移除并返回指定位置的元素:
In [49]: b_list.pop(2) Out[49]: 'peekaboo' In [50]: b_list Out[50]: ['foo', 'red', 'baz', 'dwarf']
可以用remove
去除某个值,remove
会先寻找第一个值并除去:
In [51]: b_list.append('foo') In [52]: b_list Out[52]: ['foo', 'red', 'baz', 'dwarf', 'foo'] In [53]: b_list.remove('foo') In [54]: b_list Out[54]: ['red', 'baz', 'dwarf', 'foo']
如果不考虑性能,使用append
和remove
,可以把Python的列表当做完美的“多重集”数据结构。
用in
可以检查列表是否包含某个值:
In [55]: 'dwarf' in b_list Out[55]: True
否定in
可以再加一个not:
In [56]: 'dwarf' not in b_list Out[56]: False
在列表中检查是否存在某个值远比字典和集合速度慢,因为Python是线性搜索列表中的值,但在字典和集合中,在同样的时间内还可以检查其它项(基于哈希表)。
串联和组合列表
与元组类似,可以用加号将两个列表串联起来:
In [57]: [4, None, 'foo'] + [7, 8, (2, 3)] Out[57]: [4, None, 'foo', 7, 8, (2, 3)]
如果已经定义了一个列表,用extend
方法可以追加多个元素:
In [58]: x = [4, None, 'foo'] In [59]: x.extend([7, 8, (2, 3)]) In [60]: x Out[60]: [4, None, 'foo', 7, 8, (2, 3)]
通过加法将列表串联的计算量较大,因为要新建一个列表,并且要复制对象。用extend
追加元素,尤其是到一个大列表中,更为可取。因此:
everything = [] for chunk in list_of_lists: everything.extend(chunk)
要比串联方法快:
everything = [] for chunk in list_of_lists: everything = everything + chunk
排序
你可以用sort
函数将一个列表原地排序(不创建新的对象):
In [61]: a = [7, 2, 5, 1, 3] In [62]: a.sort() In [63]: a Out[63]: [1, 2, 3, 5, 7]
sort
有一些选项,有时会很好用。其中之一是二级排序key,可以用这个key进行排序。例如,我们可以按长度对字符串进行排序:
In [64]: b = ['saw', 'small', 'He', 'foxes', 'six'] In [65]: b.sort(key=len) In [66]: b Out[66]: ['He', 'saw', 'six', 'small', 'foxes']
稍后,我们会学习sorted
函数,它可以产生一个排好序的序列副本。
二分搜索和维护已排序的列表
bisect
模块支持二分查找,和向已排序的列表插入值。bisect.bisect
可以找到插入值后仍保证排序的位置,bisect.insort
是向这个位置插入值:
In [67]: import bisect In [68]: c = [1, 2, 2, 2, 3, 4, 7] In [69]: bisect.bisect(c, 2) Out[69]: 4 In [70]: bisect.bisect(c, 5) Out[70]: 6 In [71]: bisect.insort(c, 6) In [72]: c Out[72]: [1, 2, 2, 2, 3, 4, 6, 7]
注意:
bisect
模块不会检查列表是否已排好序,进行检查的话会耗费大量计算。因此,对未排序的列表使用bisect
不会产生错误,但结果不一定正确。
切片
用切边可以选取大多数序列类型的一部分,切片的基本形式是在方括号中使用start:stop
:
In [73]: seq = [7, 2, 3, 7, 5, 6, 0, 1]
In [74]: seq[1:5]
Out[74]: [2, 3, 7, 5]
切片也可以被序列赋值:
In [75]: seq[3:4] = [6, 3] In [76]: seq Out[76]: [7, 2, 3, 6, 3, 5, 6, 0, 1]
切片的起始元素是包括的,不包含结束元素。因此,结果中包含的元素个数是stop - start
。
start
或stop
都可以被省略,省略之后,分别默认序列的开头和结尾:
In [77]: seq[:5] Out[77]: [7, 2, 3, 6, 3] In [78]: seq[3:] Out[78]: [6, 3, 5, 6, 0, 1]
负数表明从后向前切片:
In [79]: seq[-4:] Out[79]: [5, 6, 0, 1] In [80]: seq[-6:-2] Out[80]: [6, 3, 5, 6]
需要一段时间来熟悉使用切片,尤其是当你之前学的是R或MATLAB。图3-1展示了正整数和负整数的切片。在图中,指数标示在边缘以表明切片是在哪里开始哪里结束的。
图3-1 Python切片演示
在第二个冒号后面使用step
,可以隔一个取一个元素:
In [81]: seq[::2] Out[81]: [7, 3, 3, 6, 1]
一个聪明的方法是使用-1
,它可以将列表或元组颠倒过来:
In [82]: seq[::-1] Out[82]: [1, 0, 6, 5, 3, 6, 3, 2, 7]
赞赏作者
Python爱好者社区历史文章大合集:
Python爱好者社区历史文章列表(每周append更新一次)
关注后在公众号内回复“课程”即可获取:
小编的Python入门视频课程!!!
崔老师爬虫实战案例免费学习视频。
丘老师数据科学入门指导免费学习视频。
陈老师数据分析报告制作免费学习视频。
玩转大数据分析!Spark2.X+Python 精华实战课程免费学习视频。
丘老师Python网络爬虫实战免费学习视频。