其他
从“事必躬亲”到“无人驾驶” ,智能农机背后的AI秘诀是什么?
怎样让无人驾驶农机拥有更聪明的“大脑”和“眼睛”?
大田农业中,种子撒入农田后,耕、种、管、收等重要环节都可以交由农机完成。智能化作业前,农机需要对农田环境进行精准的识别分割,规划最合适耕种的地方;作业过程中,智能农机需要“认识”作物,帮助农民进行作物估产、分析区域长势,生成作业处方,指导农机自主作业。
要确保智能农机走对路、做对事,不论是作业前的路径规划,还是作业中对农田的障碍物感知,都要需要达到厘米级标准。有长期研究经验的王昊深知,难点在于农田与工业生产中标准化、封闭的环境完全不同,天气的实时变化、农田里的暗沟、地下灌溉管道、杂草干扰等因素带来许多困难。王昊和同事尝试过很多技术方法,但这些问题始终“卡着脖子”、无法实现农机全程无人驾驶。
偶然的一个机会,王昊收到了百度 AICA 首席 AI 架构师培养计划的报名邀请。AICA 不仅有深度学习技术的教授与讨论,还有资深专家基于飞桨对产业场景实际应用的指导,或许长期牵绊自己问题能实现突破。王昊仔细梳理了自己的研究成果和疑问,将“交互式农田图像感知方法”作为课题,进入 AICA 培训探索学习。
飞桨助力难题破桎梏大田耕种不再费时费力
在 AICA 课程培训中,王昊接触到了百度飞桨产业级深度学习开源开放平台,并了解到了飞桨 PaddleSeg 开发套件,便捷的数据标注和惊艳的效果让他有了全新灵感,快速地进行了上手实验和优化。
除了技术方法,王昊在模型选择上也通过和培训老师、同学的讨论有了明晰的思路,从农田地块识别的二分类,进化为作物与土壤、田埂与道路等更细化的多种分类。
最终,王昊利用飞桨克服了各种技术难题,开发并实现了农田环境识别分割的相关模型,并成功应用于基于北斗的农机自动导航系统。有了飞桨技术的这套系统,即使在形状不规则、环境复杂的农田地块里,也能快速方便地获取高精度农田场景模型,保障无人驾驶拖拉机等智能农机按照预定的轨迹精准地进行作业,大大提升了农机的智能化程度。新农民和智能农机轻松协作,保证产量的同时不操心、不费力。
农业发展事关社稷民生,影响经济发展、社会稳定和国家安全。《新一代人工智能发展规划》也指出,要研发智能化农业装备、农机田间作业自主系统。在 AI 的赋能之下,国家农业智能装备工程技术研究中心在提升农机智能化方面的实践,不仅响应了国家政策,也能辐射全国农业部门及农耕用地。智慧农业的未来图景里,将会有更多 AI 闪耀的光点。