查看原文
其他

Android热修复技术,你会怎么选?

专注于编程、互联网动态。最终将总结的技术、心得、经验(数据结构与算法、源码分析等)享给大家,这里不只限于技术!还有职场心得、生活感悟、以及面经点击上方 "程序员小乐" ,关注公众号,第一时间送达!

每日英文 

If you do not go after what you want, you’ll never have it. Life is like a cup of tea, not bitter life, but always hard for a while. 

人生就像一杯茶,不会苦一辈子,但总会苦一阵子。如果你不努力争取你想要的,那你永远都不会拥有它。


乐乐有话说 

成年人必须明白的一个道理:多少鸡汤文都比不上一张钞票给的安全感。少一点矫情,多一点努力。你想过的那种生活,得自己去挣。


来自:黄俊彬

链接:https://www.jianshu.com/p/6ae1e09ebbf5

封面来自网络

00 前言  

目前Android业内,热修复技术百花齐放,各大厂都推出了自己的热修复方案,使用的技术方案也各有所异,当然各个方案也都存在各自的局限性。在面对众多的方案,希望通过梳理这些热修复方案的对比及实现原理,掌握热修复技术的本质,同时也对项目接入做好准备。

01 什么是热修复技术?  

关于热修复这个名词,并不陌生。相信大家都有过更新window补丁的经历,通过补丁可以动态修复系统的漏洞,只不过这个过程对用户而言是可选及自行操作。

那么关于Android平台的热修复技术,简单来说,就是通过下发补丁包,让已安装的客户端动态更新,让用户可以不用重新安装APP,就能够修复软件缺陷的一种技术。

image

随着热修复技术的发展,不仅可以修复代码,同时可以修复资源文件及SO库。

image

02 为什么要使用热修复技术?  

在回答这个问题之前,我觉得应该先思考如下几个问题。

开发上线的版本能保证不存在Bug么?
修复后的版本能保证用户都及时更新么?
如何最大化减少线上Bug对业务的影响?

从这些角度来说,相信大家应该都能有所体会,热修复技术带来的优势不言而喻。

可快速修复,避免线上Bug带来的业务损失,把损失降到最低。
保证客户端的更新率,无须用户进行版本升级安装
良好的用户体验,无感知修复异常。节省用户下载安装成本。

03 怎么选择热修复技术方案?  

国内主流的技术方案

1、阿里系

2、腾讯系

3、其他


对比方案



参考Tinker及Sophix官方对比

为什么使用 Tinker?
(http://www.tinkerpatch.com/Docs/intro)

Sophix产品优势?
(https://help.aliyun.com/document_detail/51416.html?spm=a2c4g.11186623.6.543.6ed62ef2MAnXZM)

怎么选?

怎么选?这个只能说一切看需求。如果公司综合实力强,完全考虑自研都没问题,但需要综合考虑成本及维护。下面给出2点建议,如下:

1、项目需求

  • 只需要简单的方法级别Bug修复?

  • 需要资源及so库的修复?

  • 对平台兼容性要求及成功率要求?

  • 有需求对分发进行控制,对监控数据进行统计,补丁包进行管理?

  • 公司资源是否支持商业付费?

2、学习及使用成本

  • 集成难度

  • 代码侵入性

  • 调试维护

3、选择大厂

  • 技术性能有保障

  • 有专人维护

  • 热度高,开源社区活跃

如果考虑付费,推荐选择阿里的Sophix,Sophix是综合优化的产物,功能完善、开发简单透明、提供分发及监控管理。
如果不考虑付费,只需支持方法级别的Bug修复,不支持资源及so,推荐使用Robust。
如果考虑需要同时支持资源及so,推荐使用Tinker。
最后如果公司综合实力强,可考虑自研,灵活性及可控制最强。

从Github上的热度及提交记录上看,nuwa、AndFix、Amigo等的提交都是2 years ago。 

04 内业主要热修复技术方案原理?  

技术分类

image

NativeHook 原理

原理及实现

NativeHook的原理是直接在native层进行方法的结构体信息对换,从而实现完美的方法新旧替换,从而实现热修复功能。
下面以AndFix的一段jni代码来进行说明,如下:

void replace_6_0(JNIEnv* env, jobject src, jobject dest) {

    // 通过Method对象得到底层Java函数对应ArtMethod的真实地址
    art::mirror::ArtMethod* smeth =
            (art::mirror::ArtMethod*) env->FromReflectedMethod(src);

    art::mirror::ArtMethod* dmeth =
            (art::mirror::ArtMethod*) env->FromReflectedMethod(dest);

    reinterpret_cast<art::mirror::Class*>(dmeth->declaring_class_)->class_loader_ =
    reinterpret_cast<art::mirror::Class*>(smeth->declaring_class_)->class_loader_; //for plugin classloader
    reinterpret_cast<art::mirror::Class*>(dmeth->declaring_class_)->clinit_thread_id_ =
    reinterpret_cast<art::mirror::Class*>(smeth->declaring_class_)->clinit_thread_id_;
    reinterpret_cast<art::mirror::Class*>(dmeth->declaring_class_)->status_ = reinterpret_cast<art::mirror::Class*>(smeth->declaring_class_)->status_-1;
    //for reflection invoke
    reinterpret_cast<art::mirror::Class*>(dmeth->declaring_class_)->super_class_ = 0;
    //把旧函数的所有成员变量都替换为新函数的
    smeth->declaring_class_ = dmeth->declaring_class_;
    smeth->dex_cache_resolved_methods_ = dmeth->dex_cache_resolved_methods_;
    smeth->dex_cache_resolved_types_ = dmeth->dex_cache_resolved_types_;
    smeth->access_flags_ = dmeth->access_flags_ | 0x0001;
    smeth->dex_code_item_offset_ = dmeth->dex_code_item_offset_;
    smeth->dex_method_index_ = dmeth->dex_method_index_;
    smeth->method_index_ = dmeth->method_index_;

    smeth->ptr_sized_fields_.entry_point_from_interpreter_ =
    dmeth->ptr_sized_fields_.entry_point_from_interpreter_;

    smeth->ptr_sized_fields_.entry_point_from_jni_ =
    dmeth->ptr_sized_fields_.entry_point_from_jni_;
    smeth->ptr_sized_fields_.entry_point_from_quick_compiled_code_ =
    dmeth->ptr_sized_fields_.entry_point_from_quick_compiled_code_;

    LOGD("replace_6_0: %d , %d",
         smeth->ptr_sized_fields_.entry_point_from_quick_compiled_code_,
         dmeth->ptr_sized_fields_.entry_point_from_quick_compiled_code_);
}

void setFieldFlag_6_0(JNIEnv* env, jobject field) {
    art::mirror::ArtField* artField =
            (art::mirror::ArtField*) env->FromReflectedField(field);
    artField->access_flags_ = artField->access_flags_ & (~0x0002) | 0x0001;
    LOGD("setFieldFlag_6_0: %d ", artField->access_flags_);
}

每一个Java方法在art中都对应一个ArtMethod,ArtMethod记录了这个Java方法的所有信息,包括访问权限及代码执行地址等。通过env->FromReflectedMethod得到方法对应的ArtMethod的真正开始地址,然后强转为ArtMethod指针,从而对其所有成员进行修改。
这样以后调用这个方法时就会直接走到新方法的实现中,达到热修复的效果。

优缺点

优点

  • 即时生效

  • 没有性能开销,不需要任何编辑器的插桩或代码改写

缺点

存在稳定及兼容性问题。ArtMethod的结构基本参考Google开源的代码,各大厂商的ROM都可能有所改动,可能导致结构不一致,修复失败。
无法增加变量及类,只能修复方法级别的Bug,无法做到新功能的发布

javaHook 原理

原理及实现

以美团的Robust为例,Robust 的原理可以简单描述为:
1、打基础包时插桩,在每个方法前插入一段类型为 ChangeQuickRedirect 静态变量的逻辑,插入过程对业务开发是完全透明
2、加载补丁时,从补丁包中读取要替换的类及具体替换的方法实现,新建ClassLoader加载补丁dex。当changeQuickRedirect不为null时,可能会执行到accessDispatch从而替换掉之前老的逻辑,达到fix的目的

Robust 官方介绍示例图

下面通过Robust的源码来进行分析。
首先看一下打基础包是插入的代码逻辑,如下:

public static ChangeQuickRedirect u;
protected void onCreate(Bundle bundle) {
        //为每个方法自动插入修复逻辑代码,如果ChangeQuickRedirect为空则不执行
        if (u != null) {
            if (PatchProxy.isSupport(new Object[]{bundle}, this, u, false78)) {
                PatchProxy.accessDispatchVoid(new Object[]{bundle}, this, u, false78);
                return;
            }
        }
        super.onCreate(bundle);
        ...
    }

Robust的核心修复源码如下:

public class PatchExecutor extends Thread {
    @Override
    public void run() 
{
        ...
        applyPatchList(patches);
        ...
    }
    /**
     * 应用补丁列表
     */

    protected void applyPatchList(List<Patch> patches) {
        ...
        for (Patch p : patches) {
            ...
            currentPatchResult = patch(context, p);
            ...
            }
    }
     /**
     * 核心修复源码
     */

    protected boolean patch(Context context, Patch patch) {
        ...
        //新建ClassLoader
        DexClassLoader classLoader = new DexClassLoader(patch.getTempPath(), context.getCacheDir().getAbsolutePath(),
                null, PatchExecutor.class.getClassLoader());
        patch.delete(patch.getTempPath());
        ...
        try {
            patchsInfoClass = classLoader.loadClass(patch.getPatchesInfoImplClassFullName());
            patchesInfo = (PatchesInfo) patchsInfoClass.newInstance();
            } catch (Throwable t) {
             ...
        }
        ...
        //通过遍历其中的类信息进而反射修改其中 ChangeQuickRedirect 对象的值
        for (PatchedClassInfo patchedClassInfo : patchedClasses) {
            ...
            try {
                oldClass = classLoader.loadClass(patchedClassName.trim());
                Field[] fields = oldClass.getDeclaredFields();
                for (Field field : fields) {
                    if (TextUtils.equals(field.getType().getCanonicalName(), ChangeQuickRedirect.class.getCanonicalName()) && TextUtils.equals(field.getDeclaringClass().getCanonicalName(), oldClass.getCanonicalName())) {
                        changeQuickRedirectField = field;
                        break;
                    }
                }
                ...
                try {
                    patchClass = classLoader.loadClass(patchClassName);
                    Object patchObject = patchClass.newInstance();
                    changeQuickRedirectField.setAccessible(true);
                    changeQuickRedirectField.set(null, patchObject);
                    } catch (Throwable t) {
                    ...
                }
            } catch (Throwable t) {
                 ...
            }
        }
        return true;
    }
}

优缺点

优点

  • 高兼容性(Robust只是在正常的使用DexClassLoader)、高稳定性,修复成功率高达99.9%

  • 补丁实时生效,不需要重新启动

  • 支持方法级别的修复,包括静态方法

  • 支持增加方法和类

  • 支持ProGuard的混淆、内联、优化等操作

缺点

  • 代码是侵入式的,会在原有的类中加入相关代码

  • so和资源的替换暂时不支持

  • 会增大apk的体积,平均一个函数会比原来增加17.47个字节,10万个函数会增加1.67M

java mulitdex 原理

原理及实现

Android内部使用的是BaseDexClassLoader、PathClassLoader、DexClassLoader三个类加载器实现从DEX文件中读取类数据,其中PathClassLoader和DexClassLoader都是继承自BaseDexClassLoader实现。dex文件转换成dexFile对象,存入Element[]数组,findclass顺序遍历Element数组获取DexFile,然后执行DexFile的findclass。源码如下:

// 加载名字为name的class对象
public Class findClass(String name, List<Throwable> suppressed) {
    // 遍历从dexPath查询到的dex和资源Element
    for (Element element : dexElements) {
        DexFile dex = element.dexFile;
        // 如果当前的Element是dex文件元素
        if (dex != null) {
            // 使用DexFile.loadClassBinaryName加载类
            Class clazz = dex.loadClassBinaryName(name, definingContext, suppressed);
            if (clazz != null) {
                return clazz;
            }
        }
    }
    if (dexElementsSuppressedExceptions != null) {
        suppressed.addAll(Arrays.asList(dexElementsSuppressedExceptions));
    }
    return null;
}

所以此方案的原理是Hook了ClassLoader.pathList.dexElements[],将补丁的dex插入到数组的最前端。因为ClassLoader的findClass是通过遍历dexElements[]中的dex来寻找类的。所以会优先查找到修复的类。从而达到修复的效果。

图片引用自QQ空间热修复介绍

下面使用Nuwa的关键实现源码进行说明如下:

public static void injectDexAtFirst(String dexPath, String defaultDexOptPath) throws NoSuchFieldException, IllegalAccessException, ClassNotFoundException {
        //新建一个ClassLoader加载补丁Dex
        DexClassLoader dexClassLoader = new DexClassLoader(dexPath, defaultDexOptPath, dexPath, getPathClassLoader());
        //反射获取旧DexElements数组
        Object baseDexElements = getDexElements(getPathList(getPathClassLoader()));
        //反射获取补丁DexElements数组
        Object newDexElements = getDexElements(getPathList(dexClassLoader));
        //合并,将新数组的Element插入到最前面
        Object allDexElements = combineArray(newDexElements, baseDexElements);
        Object pathList = getPathList(getPathClassLoader());
        //更新旧ClassLoader中的Element数组
        ReflectionUtils.setField(pathList, pathList.getClass(), "dexElements", allDexElements);
    }

    private static PathClassLoader getPathClassLoader() {
        PathClassLoader pathClassLoader = (PathClassLoader) DexUtils.class.getClassLoader();
        return pathClassLoader;
    }

    private static Object getDexElements(Object paramObject)
            throws IllegalArgumentException, NoSuchFieldException, IllegalAccessException {
        return ReflectionUtils.getField(paramObject, paramObject.getClass(), "dexElements");
    }

    private static Object getPathList(Object baseDexClassLoader)
            throws IllegalArgumentException, NoSuchFieldException, IllegalAccessException, ClassNotFoundException {
        return ReflectionUtils.getField(baseDexClassLoader, Class.forName("dalvik.system.BaseDexClassLoader"), "pathList");
    }

    private static Object combineArray(Object firstArray, Object secondArray) {
        Class<?> localClass = firstArray.getClass().getComponentType();
        int firstArrayLength = Array.getLength(firstArray);
        int allLength = firstArrayLength + Array.getLength(secondArray);
        Object result = Array.newInstance(localClass, allLength);
        for (int k = 0; k < allLength; ++k) {
            if (k < firstArrayLength) {
                Array.set(result, k, Array.get(firstArray, k));
            } else {
                Array.set(result, k, Array.get(secondArray, k - firstArrayLength));
            }
        }
        return result;
    }

优缺点

优点

  • 不需要考虑对dalvik虚拟机和art虚拟机做适配

  • 代码是非侵入式的,对apk体积影响不大

缺点

  • 需要下次启动才修复

  • 性能损耗大,为了避免类被加上CLASS_ISPREVERIFIED,使用插桩,单独放一个帮助类在独立的dex中让其他类调用。

dex替换

原理及实现

为了避免dex插桩带来的性能损耗,dex替换采取另外的方式。原理是提供dex差量包,整体替换dex的方案。差量的方式给出patch.dex,然后将patch.dex与应用的classes.dex合并成一个完整的dex,完整dex加载得到dexFile对象作为参数构建一个Element对象然后整体替换掉旧的dex-Elements数组。

图片引用自TInker介绍

这也是微信Tinker采用的方案,并且Tinker自研了DexDiff/DexMerge算法。Tinker还支持资源和So包的更新,So补丁包使用BsDiff来生成,资源补丁包直接使用文件md5对比来生成,针对资源比较大的(默认大于100KB属于大文件)会使用BsDiff来对文件生成差量补丁。
下面我们关键看看Tinker的实现源码,当然具体的实现算法很复杂,我们只看关键的实现,最后的修复在UpgradePatch中的tryPatch方法,如下:

  @Override
    public boolean tryPatch(Context context, String tempPatchPath, PatchResult patchResult) {
        //省略一堆校验
        ... ....

        //下面是关键的diff算法及合并实现,实现相对复杂,感兴趣可以再仔细阅读源码
        //we use destPatchFile instead of patchFile, because patchFile may be deleted during the patch process
        if (!DexDiffPatchInternal.tryRecoverDexFiles(manager, signatureCheck, context, patchVersionDirectory, destPatchFile)) {
            TinkerLog.e(TAG, "UpgradePatch tryPatch:new patch recover, try patch dex failed");
            return false;
        }

        if (!BsDiffPatchInternal.tryRecoverLibraryFiles(manager, signatureCheck, context, patchVersionDirectory, destPatchFile)) {
            TinkerLog.e(TAG, "UpgradePatch tryPatch:new patch recover, try patch library failed");
            return false;
        }

        if (!ResDiffPatchInternal.tryRecoverResourceFiles(manager, signatureCheck, context, patchVersionDirectory, destPatchFile)) {
            TinkerLog.e(TAG, "UpgradePatch tryPatch:new patch recover, try patch resource failed");
            return false;
        }

        // check dex opt file at last, some phone such as VIVO/OPPO like to change dex2oat to interpreted
        if (!DexDiffPatchInternal.waitAndCheckDexOptFile(patchFile, manager)) {
            TinkerLog.e(TAG, "UpgradePatch tryPatch:new patch recover, check dex opt file failed");
            return false;
        }

        if (!SharePatchInfo.rewritePatchInfoFileWithLock(patchInfoFile, newInfo, patchInfoLockFile)) {
            TinkerLog.e(TAG, "UpgradePatch tryPatch:new patch recover, rewrite patch info failed");
            manager.getPatchReporter().onPatchInfoCorrupted(patchFile, newInfo.oldVersion, newInfo.newVersion);
            return false;
        }

        TinkerLog.w(TAG, "UpgradePatch tryPatch: done, it is ok");
        return true;
    }

优缺点

优点

  • 兼容性高

  • 补丁小

  • 开发透明,代码非侵入式

缺点

  • 冷启动修复,下次启动修复

  • Dex合并内存消耗在vm head上,容易OOM,最后导致合并失败

资源修复原理

Instant Run

1、构建一个新的AssetManager,并通过反射调用addAssertPath,把这个完整的新资源包加入到AssetManager中。这样就得到一个含有所有新资源的AssetManager
2、找到所有值钱引用到原有AssetManager的地方,通过反射,把引用处替换为AssetManager

 public static void monkeyPatchExistingResources(Context context,
                                                    String externalResourceFile, Collection activities) {
        if (externalResourceFile == null) {
            return;
        }
        try {
            //反射一个新的   AssetManager
            AssetManager newAssetManager = (AssetManager) AssetManager.class
                    .getConstructor(new Class[0]).newInstance(new Object[0]);
           //反射 addAssetPath 添加新的资源包
            Method mAddAssetPath = AssetManager.class.getDeclaredMethod("addAssetPath"new Class[]{String.class});
            mAddAssetPath.setAccessible(true);
            if (((Integer) mAddAssetPath.invoke(newAssetManager,
                    new Object[]{externalResourceFile})).intValue() == 0) {
                throw new IllegalStateException(
                        "Could not create new AssetManager");
            }
            Method mEnsureStringBlocks = AssetManager.class.getDeclaredMethod("ensureStringBlocks"new Class[0]);
            mEnsureStringBlocks.setAccessible(true);
            mEnsureStringBlocks.invoke(newAssetManager, new Object[0]);
            //反射得到Activity中AssetManager的引用处,全部换成刚新构建的AssetManager对象
            if (activities != null) {
                for (Activity activity : activities) {
                    Resources resources = activity.getResources();
                    try {
                        Field mAssets = Resources.class.getDeclaredField("mAssets");
                        mAssets.setAccessible(true);
                        mAssets.set(resources, newAssetManager);
                    } catch (Throwable ignore) {
                        Field mResourcesImpl = Resources.class.getDeclaredField("mResourcesImpl");
                        mResourcesImpl.setAccessible(true);
                        Object resourceImpl = mResourcesImpl.get(resources);
                        Field implAssets = resourceImpl.getClass().getDeclaredField("mAssets");
                        implAssets.setAccessible(true);
                        implAssets.set(resourceImpl, newAssetManager);
                    }
                    Resources.Theme theme = activity.getTheme();
                    try {
                        try {
                            Field ma = Resources.Theme.class.getDeclaredField("mAssets");
                            ma.setAccessible(true);
                            ma.set(theme, newAssetManager);
                        } catch (NoSuchFieldException ignore) {
                            Field themeField = Resources.Theme.class.getDeclaredField("mThemeImpl");
                            themeField.setAccessible(true);
                            Object impl = themeField.get(theme);
                            Field ma = impl.getClass().getDeclaredField("mAssets");
                            ma.setAccessible(true);
                            ma.set(impl, newAssetManager);
                        }
                        Field mt = ContextThemeWrapper.class.getDeclaredField("mTheme");
                        mt.setAccessible(true);
                        mt.set(activity, null);
                        Method mtm = ContextThemeWrapper.class.getDeclaredMethod("initializeTheme"new Class[0]);
                        mtm.setAccessible(true);
                        mtm.invoke(activity, new Object[0]);
                        Method mCreateTheme = AssetManager.class.getDeclaredMethod("createTheme"new Class[0]);
                        mCreateTheme.setAccessible(true);
                        Object internalTheme = mCreateTheme.invoke(newAssetManager, new Object[0]);
                        Field mTheme = Resources.Theme.class.getDeclaredField("mTheme");
                        mTheme.setAccessible(true);
                        mTheme.set(theme, internalTheme);
                    } catch (Throwable e) {
                        Log.e("InstantRun",
                                "Failed to update existing theme for activity "
                                        + activity, e);
                    }
                    pruneResourceCaches(resources);
                }
            }
            Collection references;
            if (Build.VERSION.SDK_INT >= 19) {
                Class resourcesManagerClass = Class.forName("android.app.ResourcesManager");
                Method mGetInstance = resourcesManagerClass.getDeclaredMethod("getInstance"new Class[0]);
                mGetInstance.setAccessible(true);
                Object resourcesManager = mGetInstance.invoke(nullnew Object[0]);
                try {
                    Field fMActiveResources = resourcesManagerClass.getDeclaredField("mActiveResources");
                    fMActiveResources.setAccessible(true);
                    ArrayMap  arrayMap = (ArrayMap) fMActiveResources.get(resourcesManager);
                    references = arrayMap.values();
                } catch (NoSuchFieldException ignore) {
                    Field mResourceReferences = resourcesManagerClass.getDeclaredField("mResourceReferences");
                    mResourceReferences.setAccessible(true);
                    references = (Collection) mResourceReferences.get(resourcesManager);
                }
            } else {
                Class activityThread = Class.forName("android.app.ActivityThread");
                Field fMActiveResources = activityThread.getDeclaredField("mActiveResources");
                fMActiveResources.setAccessible(true);
                Object thread = getActivityThread(context, activityThread);
                HashMap  map = (HashMap) fMActiveResources.get(thread);
                references = map.values();
            }
            for (WeakReference wr : references) {
                Resources resources = (Resources) wr.get();
                if (resources != null) {
                    try {
                        Field mAssets = Resources.class.getDeclaredField("mAssets");
                        mAssets.setAccessible(true);
                        mAssets.set(resources, newAssetManager);
                    } catch (Throwable ignore) {
                        Field mResourcesImpl = Resources.class.getDeclaredField("mResourcesImpl");
                        mResourcesImpl.setAccessible(true);
                        Object resourceImpl = mResourcesImpl.get(resources);
                        Field implAssets = resourceImpl.getClass().getDeclaredField("mAssets");
                        implAssets.setAccessible(true);
                        implAssets.set(resourceImpl, newAssetManager);
                    }
                    resources.updateConfiguration(resources.getConfiguration(), resources.getDisplayMetrics());
                }
            }
        } catch (Throwable e) {
            throw new IllegalStateException(e);
        }
    }

so修复原理

接口调用替换

sdk提供接口替换System默认加载so库的接口

SOPatchManger.loadLibrary(String libName)
替换
System.loadLibrary(String libName)

SOPatchManger.loadLibrary接口加载so库的时候优先尝试去加载sdk指定目录下补丁的so。若不存在,则再去加载安装apk目录下的so库

优点:不需要对不同sdk版本进行兼容,所以sdk版本都是System.loadLibrary这个接口

缺点:需要侵入业务代码,替换掉System默认加载so库的接口

反射注入

采取类似类修复反射注入方式,只要把补丁so库的路径插入到nativeLibraryDirectories数组的最前面,就能够达到加载so库的时候是补丁so库而不是原来so库的目录,从而达到修复。

public String findLibrary(String libraryName) {
        String fileName = System.mapLibraryName(libraryName);

        for (NativeLibraryElement element : nativeLibraryPathElements) {
            String path = element.findNativeLibrary(fileName);

            if (path != null) {
                return path;
            }
        }

        return null;
    }

优点:不需侵入用户接口调用

缺点:需要做版本兼容控制,兼容性较差

05 使用热修复技术有哪些需要注意的问题?  

版本管理

使用热修复技术后由于发布流程的变化,肯定也需求采用相应的分支管理进行控制。
通常移动开发的分支管理采用特性分支,如下:

接入热修复后,推荐可参考如下分支策略:

注意热修复分支的测试及发布流程应用正常版本流程一致,保证质量。

分发监控

目前主流的热修复方案,像Tinker及Sophix都会提供补丁的分发及监控。这也是我们选择热修复技术方案需要考虑的关键因素之一。毕竟为了保证线上版本的质量,分发控制及实时监测必不可少。

06 总结  

Android热修复技术发展至今已经是百花齐放,各大厂也都推出了自己的技术框架。也有像阿里推出的《深入探索Android热修复技术原理》对热修复技术的深入解读。本文大部分总结也都参考这本经典。鉴于热修复技术的多种多样,所以才决定进行梳理,提供选择时的一些注意事项及参考建议,也加深自己对热修复技术的理解。总的来说,还是收获满满。

参考资料

  • AndFix源码

  • Nuwa源码

  • Tinker官方介绍

  • Android热补丁之Robust原理解析(一)

  • Android热修复技术原理详解(最新最全版本)

  • 《深入探索Android热修复技术原理》

如果您觉得不错,请别忘了转发、分享、点赞让更多的人去学习, 您的举手之劳,就是对小乐最好的支持,非常感谢!

如何您想进技术群交流,关注公众号在后台回复 “加群”,或者 “学习” 即可

著作权归作者所有,欢迎大家投稿


推荐阅读

阿里、腾讯、百度、华为、京东最新面试题汇集

15张图,看懂瞎忙和高效的区别
算法的时间复杂度和空间复杂度
从Java程序员的角度理解加密的那些事


看完本文有收获?请转发分享给更多人
关注「程序员小乐」,提升技能

    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存