查看原文
其他

深入剖析二分搜索树的原理与Java源码实现

Jokey 程序员小乐 2020-10-08

点击上方 "程序员小乐" ,关注公众号

8点20分,第一时间与你相约

每日英文 

Find a right person, is to give oneself after one of the best gift in my life. 

找到一个对的人,是给自己以后的生命里最好的一份礼物。

小乐有话说 

人生就像一道多项选择题,困扰你的,往往是众多的选项,而不是题目本身。


来自:九路313

链接:cnblogs.com/start1225/p/10182710.html

责编:乐乐 | 封面来自网络


 01 折半查找法 


了解二叉查找树之前,先来看看折半查找法,也叫二分查找法。


在一个有序的整数数组中(假如是从小到大排序的),如果查找某个元素,返回元素的索引。
如下:

int[] arr = new int[]{1,3,4,6,8,9};
在 arr 数组中查找6这个元素,查到返回对应的索引,没有找到就返回-1

思想很简单:

1 先找到数组中间元素target与6比较
2 如果target比6大,就在数组的左边查找
3 如果target比6小,就在数组的右边查找

java实现代码如下:

private static int binarySearch(int[] data, int target) {
        int l = 0;
        int r = data.length - 1;

        while (l <= r) {
            //int mid = (l + r) / 2;
            //这句代码理论上是没有问题的,但是是有bug的
            //如果因为 l + r 会超过整数的最大值,就会溢出
            //所以换成下面的写法,最小边界,加上差的一半,就是中间索引

            //最小边界,加上差的一半,就是中间值
            int mid = l + (r - l) / 2;


            if (data[mid] > target) { //如果中间的值比target大,r向右移动。
                r = mid - 1;
            } else if (data[mid] < target) { //如果中间的值比target小,l向左移动
                l = mid + 1;
            } else {
                return mid; //如果中间的值与target相等,就返回下标
            }
        }

        //没有找到就返回-1
        return -1;
    }

测试代码如下:

public static void main(String[] args) {
        int[] data = new int[]{1,3,4,6,8,9};
        System.out.println(binarySearch(data, 6));
}

输出

3

折半查找的关键是数组必须有序,一次过滤掉一半的数据,时间复杂度为O(logN)。
上面是以2为底的,N为数组的元素个数.

折半查找和下面的要讲的二分搜索树是有一样的思想


02 二分搜索树定义 


二分搜索树定义双叫二分查找树,其定义如下:

1 若它的左子树不为空,则左子树上所有的节点的值均小于根结点的值
2 若它的右子树不为空,则右子树上所有的节点的值均大于根结点的值
3 它的左右子树也分别为二分搜索树

由二叉搜索树的定义可知,它前提是二叉树,并且采用了递归的定义方式。再得,它的节点满足一定的关系,左子树的节点一定比父节点的小,右子树的节点一定比父节点的大。

构造一棵二叉搜索树的目的,其实目的不是为了排序,是为了提高查找,删除,插入关键字的速度。

下面我们用图和代码来解释二叉树的查找,插入,和删除。比如下图就是一个二叉搜索树


2.0 二叉搜索树的定义和节点的定义

二叉搜索树中存放的都是key。先看下二叉树的定义

//key必须继承Comparable,可以比较大小的
public class QBST<K extends Comparable<K>, V> {
    ...
}

二叉树中节点的定义

//QNode是作为QBST的内部类的。后面会有完整的源码
   class QNode {
        //key,也相当于上图中的数字,只不过不一定是数字
        //只要能比较大小就行了。这里的key,是继承Comparable的
        K key;     

        //节点中的value
        V value;

        //左子树
        QNode left;

        //右子树
        QNode right;

        //根据key,value构造一个节点
        QNode(K key, V value) {
            this.key = key;
            this.value = value;
            this.left = null;
            this.right = null;
        }

        //根据一个节点,构造另一个新节点
        QNode(QNode node){
            this.key = node.key;
            this.value = node.value;
            this.left = node.left;
            this.right = node.right;
        }
    }

类的定义和类中节点的定义都有了。
二分搜索树的定义如下:

/**
 * 二分搜索树,也叫二分查找树
 */

public class QBST<K extends Comparable<K>, V> {
    class QNode {
        K key;
        V value;
        QNode left;
        QNode right;

        QNode(K key, V value) {
            this.key = key;
            this.value = value;
            this.left = null;
            this.right = null;
        }

        QNode(QNode node){
            this.key = node.key;
            this.value = node.value;
            this.left = node.left;
            this.right = node.right;
        }
    }

    //树的根
    private QNode root;
    //树中节点的个数
    private int count;

    //构造一棵空的二分搜索树
    public QBST() {
        root = null;
        count = 0;
    }

    //返回二分搜索树中的个数
    public int size() {
        return count;
    }

    //树是否为空
    public boolean isEmpty() {
        return count == 0;
    }

 }

2.1 二叉搜索树的插入

1 如果这棵树为空,新建一个节点,作为根
2 如果要插入的key比根节点大,就插入到右子树中
3 如果要插入的key比根节点小,就插入到左子树中
4 如果要插入的key和根节点相等,就更新当前节点的value
代码如下:

public void insert(K key, V value) {
        root = insert(root, key, value);
    }

    // 向以node为根的二叉搜索树中,插入节点(key,value)
    // 返回插入新节点后的二叉搜索树的根
    private QNode insert(QNode node, K key, V value) {
        //查检条件
        checkNotNull(key,"key is null");

        //如果node为空,直接new一个节点返回
        if (node == null) {
            count++;
            return new QNode(key, value);
        }

        //如果key比根节点大,插入到node的右子树中
        if (key.compareTo(node.key) == 1) {
            node.right = insert(node.right, key, value);

        //如果key比根节点小,插入到node的左子树中    
        } else if (key.compareTo(node.key) == -1) {
            node.left = insert(node.left, key, value);

        //如果key和根节点相等,更新根节点的value    
        } else {
            node.value = value;
        }

        //返回根
        return node;
    }

2.2 二叉搜索树的查找

和上面向一棵二叉搜索树插入一个节点一样。
向一棵二叉搜索树中查找一个节点也是类似
1 如果根节点为空,不用查找了,返回null
2 如果key比根节点的key要大,在右子树中查找
3 如果key比根节点的key要小,在左子树中查找
4 如果key和根节点的key相等,返回根节点

代码实现如下:

//搜索key结果的value
   public V search(K key){
        return search(root,key);
    }

    // 向以node为根的二叉搜索树中,以key为键,返回V
    private V search(QNode node,K key){
        checkNotNull(key,"key is null");

        //如果当前节点为null,返回null
        if(node == null){
            return null;
        }

        //如果key比根节点的key大,在右子树中查找
        if(key.compareTo(node.key) == 1){
            return search(node.right,key);

        //如果key比根节点的key小,在左子树中查找    
        }else if(key.compareTo(node.key) == -1){
            return search(node.left,key);

        //如果key与根节点的key值相等,就返回节点的value值    
        }else {
            return node.value;
        }
    }

2.3 二叉搜索树的遍历

二叉树的遍历有前序遍历,中序遍历,后序遍历,层序遍历(也叫做广度优先遍历)
如下图的二叉搜索树。

根据根节点的访问顺序,可以把遍历分为前序遍历,中序遍历,后序遍历
前序遍历:先访问根节点,再前序遍历左右子树
中序遍历:先中序遍历左子树,再访问根节点,后中序遍历右子树
后序遍历:先后序遍历左子树,再后序遍历右子树,再访问根节点

代码实现分别如下:

// 前序遍历 O(n)
    public void preOrder(){
        //后序遍历以root为根的二叉搜索树
        preOrder(root);
    }

    private void preOrder(QNode node){
        if(node != null){
            //先遍历根节点
            System.out.println(node.key);//这里的访问只是打印
            //前序遍历左子树
            preOrder(node.left);
            //后序遍历右子树
            preOrder(node.right);
        }
    }

    // 中序遍历 O(n)
    public void middleOrder(){
        middleOrder(root);
    }

    private void middleOrder(QNode node){
        if(node != null){
            middleOrder(node.left);
            System.out.println(node.key);
            middleOrder(node.right);
        }
    }

    // 后序遍历 O(n)
    public void postOrder(){
        postOrder(root);
    }

    private void postOrder(QNode node){
        if(node != null){
            postOrder(node.left);
            postOrder(node.right);
            System.out.println(node.key);
        }
    }

其中层序遍历就是一层一层的从左到右遍历
上图中层序遍历的结果是 13 6 15 3 7 10 18
代码实现需要借助队列,代码实现如下:

// 层序遍历,也叫做广度优先遍历
    public void levelOrder(){
        if(root == null){
            return;
        }

        LinkedList<QNode> queue = new LinkedList<>();
        queue.addLast(root);

        while (!queue.isEmpty()){
            QNode node = queue.removeLast();

            //这里我们只打印
            System.out.println(node.key);

            queue.addLast(node.left);
            queue.addLast(node.right);
        }
    }

2.4 二叉搜索树的删除

二叉搜索树最麻烦的就是删除节点,删除任意二叉树中的节点之前,我们来先删除特殊的节点。

  1. 删除二叉搜索树中最小的节点

  2. 删除二叉搜索树中最大的节点

  3. 查找二叉搜索树中最小的节点

  4. 查找二叉搜索树中最大的节点

我们先来实现这些操作。

如下图

根据二叉搜索树的定义,可以得出以下结论

  1. 在一个二叉搜索树中,最小的节点一定是最左边的节点,也就是图中的节点 3

  2. 在一个二叉搜索树中,最大的节点一定是最右边的节点,也就是图中的节点 18

总之:

最小节点去左子树中找,直到节点的左孩子为空,则当前节点就是最小节点
最大节点去右子树中找,直到节点的右孩子为空,则当前节点就是最大节点

1 先来实现查找二叉搜索树中最小的节点
如下代码

//查找一棵树中最小的节点,返回 K 
    public K minimum(){
        checkNotNull(root,"the tree is empty");

        //在以根为root的二叉搜索树中返回最小节点的键值
        QNode minNode = minimum(root);

        //返回最小节点的键值
        return minNode.key;
    }

    // 在以node为根的二叉搜索树中,返回最小键值的节点
    private QNode minimum(QNode node){
        //如果node.left == null,说明当前node节点就是最小的节点
        //返回当前节点node
        if(node.left == null){
            return node;
        }

        //如果当前节点不是最小的节点
        //继承往左子树中查找
        return minimum(node.left);
    }

同理,查找最大节点也是一样
2 实现查找二叉搜索树中最大的节点
代码如下:

public K maximum(){
        checkNotNull(root,"the tree is empty");
        QNode maxNode = maximum(root);
        return maxNode.key;
    }

    // 在以node为根的二叉搜索树中,返回最大键值的节点
    private QNode maximum(QNode node){
        if(node.right == null){
            return node;
        }

        return maximum(node.right);
    }

上面实现了查找最小节点和最大节点,下面我们再来实现删除最小节点和删除最大节点

3 实现删除二叉搜索树中最小的节点
一直往左孩子中删除,当某一个节点node没有左孩子时,说明当前节点就是最小节点
这时候分两种情况

  1. 当前节点有右孩子
    如果是这种情况,直接把右孩子返回,作为当前节点

  2. 当前节点没有右孩子
    如果是这种情况,直接返回null。此时返回右孩子也行,因为右孩子也是null

代码实现如下

// 删除二叉搜索树中最小的节点
    public void removeMin(){
        if(root != null){
            root = removeMin(root);
        }
    }

    // 删除掉以node为根的二分搜索树中的最小的节点
    // 返回删除节点后新的二分搜索树的根
    private QNode removeMin(QNode node){
        //如果当前当前没有左孩子,则当前节点就是最小节点
        if(node.left == null){
            //保存当前节点的右孩子,这句代码把上面两种情况都包含了
            QNode rightNode = node.right;
            node = null;    //释放当前节点
            count--;        //记得数量要减1
            return rightNode;//返回右孩子,有可能为空或者不为空
        }

        //递归调用删除以当前节点的左孩子为根的二叉搜索中最小的节点
        node.left = removeMin(node.left);

        //别忘了返回当前节点
        return node;
    }

同理,删除二叉搜索树中最大的节点的代码如下:

// 删除二叉搜索树中最大的节点
    public void removeMax(){
        if(root != null){
            root = removeMax(root);
        }
    }

    // 删除掉以node为根的二分搜索树中的最大的节点
    // 返回删除节点后新的二分搜索树的根
    private QNode removeMax(QNode node){
        if(node.right == null){
            QNode leftNode = node.left;
            count--;
            node = null;

            return leftNode;
        }

        node.right = removeMax(node.right);
        return node;
    }

下面来分析一下删除任意一个节点。
删除任意一个节点node,那么可以分为以下几种情况

  1. node 没有孩子

  2. node 只有一个孩子

  3. node 有两个孩子

如下图一棵二叉搜索树,我们来分析

第一种情况:node没有孩子
这种情况最简单,直接删除就行了,剩下的还是一棵二叉搜索树
比如图中的 
节点5,节点13,节点27,节点50,删除任意一个节点之后
剩下的还是满足一棵二叉搜索树

第二种情况:node只有一个孩子
这种情况又分两种

  1. node节点有一个左孩子

  2. node节点有一个右孩子

上面两种情况其实不影响,比如图中的节点10,节点45,分别有一个左孩子和一个右孩子。
也好办,节点10删除后,它的左孩子节点5,放在节点10的位置
同理知,节点45删除后,它的右孩子节点50,放在节点45的位置
这样一来,剩下的节点还是一棵二叉搜索树

第三种情况:node有两个孩子
还是上图为准,以
节点17为例,节点17有左右两个孩子,分别是10,19
要删除
节点17,怎么办呢?
或者说
节点17删除 后,哪个节点应该放在节点17的位置上呢?

我们节点17满足两个性质 :

  1. 17大于它的左孩子10

  2. 17小于它的右孩子19

那么我们找到一个这样的节点,只要满足上面这两条性质,不就是可以了吗。
so easey

我们就来先找一个大于10而且小于19的节点

  1. 大于 10 的节点,只要在 17 的右子树
    也就是以 19 为根节点的树中找不就行了吗
    因为17的右子树中所有的节点都比 17 大

  2. 小于 19 的节点,只要在以 19 为根的树中找左孩子不就得了吗
    经过上面的分析,这样的节点就是 13 啊,将17删除 ,把13放到17的位置 ,如图

其实,把10放到17的位置也是可以的。如下图

10和13两个节点都满足条件,所以我们可以得出结论

删除一个有两个孩子节点,可以找这个节点左子树中的最大节点,或者右子树中的最小节点来放到当前位置

伪代码:
删除左右都 有孩子的节点 d
找到 s = min(d.right)
s 可以叫作 d 的后继
s.right = deledeMin(d->right)
s.left = d.left;
删除 d, s 是新的子树的根

翻译成代码如下:

public void remove(K key) {
        root = remove(root, key);
    }

    // 删除掉以node为根的二分搜索树中键值为key的节点
    // 返回删除节点后新的二分搜索树的根
    // O(logN)
    private QNode remove(QNode node, K key) {
        //如果树为null,返回null
        if (node == null) {
            return null;
        }

        //想要删除某个节点,必须先要找到这个节点
        //所以下面的代码包含了查找

        if (key.compareTo(node.key) == -1) {//如果key小于根节点的key

            //到node的左子树查找并删除键值为key的节点
            node.left = remove(node.left, key);

            //返回删除节点后新的二分搜索树的根
            return node;

        } else if (key.compareTo(node.key) == 1) {//如果key大于根节点的key

            //到node的右子树查找并删除键值为key的节点
            node.right = remove(node.right, key);

            //返回删除节点后新的二分搜索树的根
            return node;
        } else { //key == node.key,也就是找到了这个节点

            //当前节点的左孩子为null
            if (node.left == null) {
                //保存右孩子节点
                QNode rightNode = node.right;
                //个数减1
                count--;

                //删除
                node = null;

                //右节点作为新的根
                return rightNode;
            }

            //当前节点的右孩子为null
            if (node.right == null) {
                //保存左孩子的节点
                QNode leftNode = node.left;
                //个数减1
                count--;

                //删除
                node = null;

                //左节点作为新的根
                return leftNode;
            }

            //上面的情况也包括了左右两个孩子都是null
            //这样的情况就走第一种,node.left==null的条件中。也满足


            //下面是 node.left != null && node.right != null的情况

            //找到右子树中最小节点
            QNode min = minimum(node.right);

            //用最小节点新建一个节点,因为等会要删除最小的节点,所以这里我们要新建一个最小节点
            QNode s = new QNode(min);

            //s的右孩子,就是删除node右子树中最小节点返回的根
            s.right = removeMin(node.right);

            //s的左孩子,就是删除节点的左孩子
            s.left = node.left;

            //返回新的根
            return s;
        }
    }

同过上面的分析,我们了解了二叉搜索树的性质,以及插入,查找,查找最大节点,查找最小节点,删除最大节点,删除最小节点,以及最后分析出来删除一个任意节点。

下面我们粘出完整代码 。如下

/**
 * 二分搜索树,也叫二分查找树
 */

public class QBST<K extends Comparable<K>, V> {
    class QNode {
        K key;
        V value;
        QNode left;
        QNode right;

        QNode(K key, V value) {
            this.key = key;
            this.value = value;
            this.left = null;
            this.right = null;
        }

        QNode(QNode node) {
            this.key = node.key;
            this.value = node.value;
            this.left = node.left;
            this.right = node.right;
        }
    }

    private QNode root;
    private int count;


    public QBST() {
        root = null;
        count = 0;
    }

    public int size() {
        return count;
    }

    public boolean isEmpty() {
        return count == 0;
    }

    public void insert(K key, V value) {
        root = insert(root, key, value);
    }

    // 向以node为根的二叉搜索树中,插入节点(key,value)
    // 返回插入新节点后的二叉搜索树的根
    private QNode insert(QNode node, K key, V value) {
        checkNotNull(key, "key is null");

        if (node == null) {
            count++;
            return new QNode(key, value);
        }

        if (key.compareTo(node.key) == 1) {
            node.right = insert(node.right, key, value);
        } else if (key.compareTo(node.key) == -1) {
            node.left = insert(node.left, key, value);
        } else {
            node.value = value;
        }

        return node;
    }

    public boolean contain(K key) {
        return contain(root, key);
    }

    // 向以node为根的二叉搜索树中,查找是否包含key的节点
    private boolean contain(QNode node, K key) {
        checkNotNull(key, "key is null");

        if (node == null) {
            return false;
        }

        if (key.compareTo(node.key) == 1) {
            return contain(node.right, key);
        } else if (key.compareTo(node.key) == -1) {
            return contain(node.left.key);
        } else {
            return true;
        }
    }

    public V search(K key) {
        return search(root, key);
    }

    // 向以node为根的二叉搜索树中,
    private V search(QNode node, K key) {
        checkNotNull(key, "key is null");

        if (node == null) {
            return null;
        }

        if (key.compareTo(node.key) == 1) {
            return search(node.right, key);
        } else if (key.compareTo(node.key) == -1) {
            return search(node.left, key);
        } else {
            return node.value;
        }
    }

    // 前序遍历 O(n)
    public void preOrder() {
        preOrder(root);
    }

    private void preOrder(QNode node) {
        if (node != null) {
            System.out.println(node.key);
            preOrder(node.left);
            preOrder(node.right);
        }
    }

    // 中序遍历 O(n)
    public void middleOrder() {
        middleOrder(root);
    }

    private void middleOrder(QNode node) {
        if (node != null) {
            middleOrder(node.left);
            System.out.println(node.key);
            middleOrder(node.right);
        }
    }

    // 后序遍历 O(n)
    public void postOrder() {
        postOrder(root);
    }

    private void postOrder(QNode node) {
        if (node != null) {
            postOrder(node.left);
            postOrder(node.right);
            System.out.println(node.key);
        }
    }

    // 层序遍历,也叫做广度优先遍历
    public void levelOrder() {
        if (root == null) {
            return;
        }

        LinkedList<QNode> queue = new LinkedList<>();
        queue.addLast(root);

        while (!queue.isEmpty()) {
            QNode node = queue.removeLast();
            System.out.println(node.key);
            queue.addLast(node.left);
            queue.addLast(node.right);
        }
    }

    public void destroy() {
        destroy(root);
    }

    // 销毁操作就是后序遍历的一次应用
    private void destroy(QNode node) {
        if (node != null) {
            destroy(node.left);
            destroy(node.right);

            node = null;
            count--;
        }
    }

    public K minimum() {
        checkNotNull(root, "the tree is empty");
        QNode minNode = minimum(root);
        return minNode.key;
    }

    // 在以node为根的二叉搜索树中,返回最小键值的节点
    private QNode minimum(QNode node) {
        if (node.left == null) {
            return node;
        }

        return minimum(node.left);
    }

    public K maximum() {
        checkNotNull(root, "the tree is empty");
        QNode maxNode = maximum(root);
        return maxNode.key;
    }

    // 在以node为根的二叉搜索树中,返回最大键值的节点
    private QNode maximum(QNode node) {
        if (node.right == null) {
            return node;
        }

        return maximum(node.right);
    }

    // 删除二叉搜索树中最小的节点
    public void removeMin() {
        if (root != null) {
            root = removeMin(root);
        }
    }

    // 删除掉以node为根的二分搜索树中的最小的节点
    // 返回删除节点后新的二分搜索树的根
    private QNode removeMin(QNode node) {
        if (node.left == null) {
            QNode rightNode = node.right;
            node = null;
            count--;
            return rightNode;
        }

        node.left = removeMin(node.left);
        return node;
    }

    // 删除二叉搜索树中最大的节点
    public void removeMax() {
        if (root != null) {
            root = removeMax(root);
        }
    }

    // 删除掉以node为根的二分搜索树中的最大的节点
    // 返回删除节点后新的二分搜索树的根
    private QNode removeMax(QNode node) {
        if (node.right == null) {
            QNode leftNode = node.left;
            count--;
            node = null;

            return leftNode;
        }

        node.right = removeMax(node.right);
        return node;
    }

    public void remove(K key) {
        root = remove(root, key);
    }

    // 删除掉以node为根的二分搜索树中键值为key的节点
    // 返回删除节点后新的二分搜索树的根
    // O(logN)
    private QNode remove(QNode node, K key) {
        //如果树为null,返回null
        if (node == null) {
            return null;
        }

        //想要删除某个节点,必须先要找到这个节点
        //所以下面的代码包含了查找

        if (key.compareTo(node.key) == -1) {//如果key小于根节点的key

            //到node的左子树查找并删除键值为key的节点
            node.left = remove(node.left, key);

            //返回删除节点后新的二分搜索树的根
            return node;

        } else if (key.compareTo(node.key) == 1) {//如果key大于根节点的key

            //到node的右子树查找并删除键值为key的节点
            node.right = remove(node.right, key);

            //返回删除节点后新的二分搜索树的根
            return node;
        } else { //key == node.key,也就是找到了这个节点

            //当前节点的左孩子为null
            if (node.left == null) {
                //保存右孩子节点
                QNode rightNode = node.right;
                //个数减1
                count--;

                //删除
                node = null;

                //右节点作为新的根
                return rightNode;
            }

            //当前节点的右孩子为null
            if (node.right == null) {
                //保存左孩子的节点
                QNode leftNode = node.left;
                //个数减1
                count--;

                //删除
                node = null;

                //左节点作为新的根
                return leftNode;
            }

            //上面的情况也包括了左右两个孩子都是null
            //这样的情况就走第一种,node.left==null的条件中。也满足


            //下面是 node.left != null && node.right != null的情况

            //找到右子树中最小节点
            QNode min = minimum(node.right);

            //用最小节点新建一个节点,因为等会要删除最小的节点,所以这里我们要新建一个最小节点
            QNode s = new QNode(min);

            //s的右孩子,就是删除node右子树中最小节点返回的根
            s.right = removeMin(node.right);

            //s的左孩子,就是删除节点的左孩子
            s.left = node.left;

            //返回新的根
            return s;
        }
    }


    private <E> void checkNotNull(E e, String message) {
        if (e == null) {
            throw new IllegalArgumentException(message);
        }
    }

}


荐阅读

阿里、腾讯、百度、华为、京东最新面试题汇集

一个故事讲完HTTPS

HashMap是如何工作的?

面试一线大厂的点点滴滴

这里有你需要的编程技术、心得、经验(数据结构与算法、源码分析等),这里不止限于技术!还有职场心得、生活感悟、以及面经等。关注公众号,第一时间送达!

PS:如何您想进技术群交流,关注公众号在后台回复 “加群”,或者 “学习” 即可


看完本文有收获?请转发分享给更多人
关注「程序员小乐」,收看更多精彩内容

    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存