其他
什么是脏数据?怎样用箱形图分析异常值?终于有人讲明白了
导读:数据质量分析是数据挖掘中数据准备过程的重要一环,是数据预处理的前提,也是数据挖掘分析结论有效性和准确性的基础。没有可信的数据,数据挖掘构建的模型将是空中楼阁。
数据质量分析的主要任务是检查原始数据中是否存在脏数据。脏数据一般是指不符合要求以及不能直接进行相应分析的数据。在常见的数据挖掘工作中,脏数据包括:缺失值、异常值、不一致的值、重复数据及含有特殊符号(如#、¥、*)的数据。
本文将主要对数据中的缺失值、异常值和一致性进行分析。
有些信息暂时无法获取,或者获取信息的代价太大。 有些信息是被遗漏的。可能是因为输入时认为该信息不重要、忘记填写或对数据理解错误等一些人为因素而遗漏,也可能是由于数据采集设备故障、存储介质故障、传输媒体故障等非人为原因而丢失。 属性值不存在。在某些情况下,缺失值并不意味着数据有错误。对一些对象来说某些属性值是不存在的,如一个未婚者的配偶姓名、一个儿童的固定收入等。
数据挖掘建模将丢失大量的有用信息。 数据挖掘模型所表现出的不确定性更加显著,模型中蕴含的规律更难把握。 包含空值的数据会使建模过程陷入混乱,导致不可靠的输出。
使用简单的统计分析,可以得到含有缺失值的属性的个数以及每个属性的未缺失数、缺失数与缺失率等。 对于缺失值的处理,从总体上来说分为删除存在缺失值的记录、对可能值进行插补和不处理3种情况。
QL称为下四分位数,表示全部观察值中有四分之一的数据取值比它小; QU称为上四分位数,表示全部观察值中有四分之一的数据取值比它大; IQR称为四分位数间距,是上四分位数QU与下四分位数QL之差,其间包含了全部观察值的一半。
代码清单3-1 使用describe()方法查看数据的基本情况
import pandas as pd
catering_sale = '../data/catering_sale.xls' # 餐饮数据
data = pd.read_excel(catering_sale, index_col='日期')
# 读取数据,指定“日期”列为索引列
print(data.describe())
销量
count 200.000000
mean 2755.214700
std 751.029772
min 22.000000
25% 2451.975000
50% 2655.850000
75% 3026.125000
max 9106.440000
代码清单3-2 餐饮日销额数据异常值检测
import matplotlib.pyplot as plt# 导入图像库
plt.rcParams['font.sans-serif'] = ['SimHei']# 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.figure() # 建立图像
p = data.boxplot(return_type='dict') # 画箱型图,直接使用DataFrame的方法
x = p['fliers'][0].get_xdata() # 'flies'即为异常值的标签
y = p['fliers'][0].get_ydata()
y.sort() # 从小到大排序,该方法直接改变原对象
'''
用annotate添加注释
其中有些相近的点,注释会出现重叠,难以看清,需要一些技巧来控制
以下参数都是经过调试的,需要具体问题具体调试
'''
for i in range(len(x)):
if i>0:
plt.annotate(y[i], xy=(x[i],y[i]), xytext=(x[i]+0.05 -0.8/(y[i]-y[i-1]), y[i]))
else:
plt.annotate(y[i], xy=(x[i],y[i]), xytext=(x[i]+0.08,y[i]))
plt.show() # 展示箱型图
更多精彩👇