其他
手把手教你用直方图、饼图和条形图做数据分析(Python代码)
导读:对数据进行质量分析以后,接下来可通过绘制图表、计算某些特征量等手段进行数据的特征分析。
其中,分布分析能揭示数据的分布特征和分布类型。本文就手把手教你做分布分析。
第一步:求极差。 第二步:决定组距与组数。 第三步:决定分点。 第四步:列出频率分布表。 第五步:绘制频率分布直方图。
各组之间必须是相互排斥的。 各组必须将所有的数据包含在内。 各组的组宽最好相等。
其中,第1列将数据所在的范围分成若干组段,其中第1个组段要包括最小值,最后一个组段要包括最大值。习惯上将各组段设为左闭右开的半开区间,如第一个组段为[0,500)。 第2列组中值是各组段的代表值,由本组段的上限值和下限值相加除以2得到。 第3列和第4列分别为频数和频率。 第5列是累计频率,是否需要计算该列数值视情况而定。
代码清单3-3 “捞起生鱼片”的季度销售情况
import pandas as pd
import numpy as np
catering_sale = '../data/catering_fish_congee.xls' # 餐饮数据
data = pd.read_excel(catering_sale,names=['date','sale']) # 读取数据,指定“日期”
列为索引
bins = [0,500,1000,1500,2000,2500,3000,3500,4000]
labels = ['[0,500)','[500,1000)','[1000,1500)','[1500,2000)',
'[2000,2500)','[2500,3000)','[3000,3500)','[3500,4000)']
data['sale分层'] = pd.cut(data.sale, bins, labels=labels)
aggResult = data.groupby(by=['sale分层'])['sale'].agg({'sale': np.size})
pAggResult = round(aggResult/aggResult.sum(), 2, ) * 100
import matplotlib.pyplot as plt
plt.figure(figsize=(10,6)) # 设置图框大小尺寸
pAggResult['sale'].plot(kind='bar',width=0.8,fontsize=10) # 绘制频率直方图
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.title('季度销售额频率分布直方图',fontsize=20)
plt.show()
代码清单3-4 不同菜品在某段时间的销售量分布情况
import pandas as pd
import matplotlib.pyplot as plt
catering_dish_profit = '../data/catering_dish_profit.xls'# 餐饮数据
data = pd.read_excel(catering_dish_profit) # 读取数据,指定“日期”列
为索引
# 绘制饼图
x = data['盈利']
labels = data['菜品名']
plt.figure(figsize=(8, 6)) # 设置画布大小
plt.pie(x,labels=labels) # 绘制饼图
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.title('菜品销售量分布(饼图)') # 设置标题
plt.axis('equal')
plt.show()
# 绘制条形图
x = data['菜品名']
y = data['盈利']
plt.figure(figsize=(8, 4)) # 设置画布大小
plt.bar(x,y)
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.xlabel('菜品') # 设置x轴标题
plt.ylabel('销量') # 设置y轴标题
plt.title('菜品销售量分布(条形图)')# 设置标题
plt.show() # 展示图片
本文摘编自《Python数据分析与挖掘实战》(第2版),经出版方授权发布。
延伸阅读《Python数据分析与挖掘实战》
更多精彩👇