查看原文
其他

百篇论文纵览大型语言模型最新研究进展

王晓磊 RUC AI Box 2023-08-04

 © 作者|王晓磊 

  机构|中国人民大学  

 研究方向 | 对话式信息获取  

本文整理了2022年以来发表在顶级会议上的大语言模型相关论文。文章也同步发布在AI Box知乎专栏(知乎搜索 AI Box专栏),欢迎大家在知乎专栏的文章下方评论留言,交流探讨! 

导读

去年底,OpenAI 推出的 ChatGPT 在短短数月内已经风靡全球。这个基于 GPT-3.5 的大型语言模型,具备惊人的自然语言生成和理解能力,可以像人类一样进行对话、翻译、摘要等任务。由于其优秀的表现,ChatGPT 及其背后的大型语言模型迅速成为人工智能领域的热门话题,吸引了广大科研人员和开发者的关注和参与。

本文整理了 2022 年在各大顶会(ACL、EMNLP、ICLR、ICML、NeurIPS等)发表的和大型语言模型相关的论文,共计 100 篇。论文列表已经同步更新到 Github仓库(https://github.com/RUCAIBox/Top-conference-paper-list),欢迎大家关注和 Star。

Catalog(目录)

  • Training【训练】
    • Pre-Training【预训练】
    • Instruction Tuning【指令微调】
  • Utilization【使用】
    • In-Context Learning【上下文学习】
    • Chain-of-Thought Prompting【思维链提示】
    • Compression【压缩】
    • Others【其他】
  • Application【应用】
    • Multi-Modal【多模态】
    • Code【代码】
    • Retrieval【检索】
    • Text Generation【文本生成】
    • Others【其他】
  • Analysis & Evaluation【分析与评测】

Training【训练】

Pre-Training【预训练】

  • UL2: Unifying Language Learning Paradigms
  • Learning to Grow Pretrained Models for Efficient Transformer Training
  • Efficient Large Scale Language Modeling with Mixtures of Experts
  • Knowledge-in-Context: Towards Knowledgeable Semi-Parametric Language Models
  • CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis
  • InCoder: A Generative Model for Code Infilling and Synthesis
  • CodeBPE: Investigating Subtokenization Options for Large Language Model Pretraining on Source Code
  • CodeRetriever: A Large Scale Contrastive Pre-Training Method for Code Search
  • UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining
  • GLM-130B: An Open Bilingual Pre-trained Model
  • When FLUE Meets FLANG: Benchmarks and Large Pretrained Language Model for Financial Domain

Instruction Tuning【指令微调】

  • What Makes Instruction Learning Hard? An Investigation and a New Challenge in a Synthetic Environment
  • InstructDial: Improving Zero and Few-shot Generalization in Dialogue through Instruction Tuning
  • Learning Instructions with Unlabeled Data for Zero-Shot Cross-Task Generalization
  • Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks
  • Boosting Natural Language Generation from Instructions with Meta-Learning
  • Help me write a Poem - Instruction Tuning as a Vehicle for Collaborative Poetry Writing
  • Multitask Instruction-based Prompting for Fallacy Recognition
  • Not All Tasks Are Born Equal: Understanding Zero-Shot Generalization
  • HypeR: Multitask Hyper-Prompted Training Enables Large-Scale Retrieval Generalization

Utilization【使用】

In-Context Learning【上下文学习】

  • What learning algorithm is in-context learning? Investigations with linear models
  • Ask Me Anything: A simple strategy for prompting language models
  • Large Language Models are Human-Level Prompt Engineers
  • Using Both Demonstrations and Language Instructions to Efficiently Learn Robotic Tasks
  • kNN Prompting: Beyond-Context Learning with Calibration-Free Nearest Neighbor Inference
  • Guess the Instruction! Flipped Learning Makes Language Models Stronger Zero-Shot Learners
  • Selective Annotation Makes Language Models Better Few-Shot Learners
  • Active Example Selection for In-Context Learning
  • Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?
  • In-Context Learning for Few-Shot Dialogue State Tracking
  • Few-Shot Anaphora Resolution in Scientific Protocols via Mixtures of In-Context Experts
  • ProGen: Progressive Zero-shot Dataset Generation via In-context Feedback
  • Controllable Dialogue Simulation with In-context Learning
  • Thinking about GPT-3 In-Context Learning for Biomedical IE? Think Again
  • XRICL: Cross-lingual Retrieval-Augmented In-Context Learning for Cross-lingual Text-to-SQL Semantic Parsing
  • On the Compositional Generalization Gap of In-Context Learning
  • Towards In-Context Non-Expert Evaluation of Reflection Generation for Counselling Conversations
  • Towards Few-Shot Identification of Morality Frames using In-Context Learning

Chain-of-Thought Prompting【思维链提示】

  • ReAct: Synergizing Reasoning and Acting in Language Models
  • Selection-Inference: Exploiting Large Language Models for Interpretable Logical Reasoning
  • Neuro-Symbolic Procedural Planning with Commonsense Prompting
  • Language Models Are Greedy Reasoners: A Systematic Formal Analysis of Chain-of-Thought
  • PINTO: Faithful Language Reasoning Using Prompt-Generated Rationales
  • Decomposed Prompting: A Modular Approach for Solving Complex Tasks
  • Complexity-Based Prompting for Multi-step Reasoning
  • Automatic Chain of Thought Prompting in Large Language Models
  • Compositional Semantic Parsing with Large Language Models
  • Self-Consistency Improves Chain of Thought Reasoning in Language Models
  • Least-to-Most Prompting Enables Complex Reasoning in Large Language Models
  • Entailer: Answering Questions with Faithful and Truthful Chains of Reasoning
  • Iteratively Prompt Pre-trained Language Models for Chain of Thought
  • ConvFinQA: Exploring the Chain of Numerical Reasoning in Conversational Finance Question Answering
  • Induced Natural Language Rationales and Interleaved Markup Tokens Enable Extrapolation in Large Language Models

Compression【压缩】

  • Understanding and Improving Knowledge Distillation for Quantization Aware Training of Large Transformer Encoders
  • The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models
  • AlphaTuning: Quantization-Aware Parameter-Efficient Adaptation of Large-Scale Pre-Trained Language Models

Others【其他】

  • BBTv2: Towards a Gradient-Free Future with Large Language Models
  • Compositional Task Representations for Large Language Models
  • Just Fine-tune Twice: Selective Differential Privacy for Large Language Models

Application【应用】

Multi-Modal【多模态】

  • Visual Classification via Description from Large Language Models
  • Socratic Models: Composing Zero-Shot Multimodal Reasoning with Language
  • Plug-and-Play VQA: Zero-shot VQA by Conjoining Large Pretrained Models with Zero Training

Code【代码】

  • DocPrompting: Generating Code by Retrieving the Docs
  • Planning with Large Language Models for Code Generation
  • CodeT: Code Generation with Generated Tests
  • Language Models Can Teach Themselves to Program Better

Retrieval【检索】

  • Promptagator: Few-shot Dense Retrieval From 8 Examples
  • Recitation-Augmented Language Models
  • Generate rather than Retrieve: Large Language Models are Strong Context Generators
  • QUILL: Query Intent with Large Language Models using Retrieval Augmentation and Multi-stage Distillation

Text Generation【文本生成】

  • Generating Sequences by Learning to Self-Correct
  • RankGen: Improving Text Generation with Large Ranking Models
  • Eliciting Knowledge from Large Pre-Trained Models for Unsupervised Knowledge-Grounded Conversation

Others【其他】

  • Systematic Rectification of Language Models via Dead-end Analysis
  • Reward Design with Language Models
  • Bidirectional Language Models Are Also Few-shot Learners
  • Composing Ensembles of Pre-trained Models via Iterative Consensus
  • Binding Language Models in Symbolic Languages
  • Mind's Eye: Grounded Language Model Reasoning through Simulation

Analysis & Evaluation【分析与评测】

  • WikiWhy: Answering and Explaining Cause-and-Effect Questions
  • ROSCOE: A Suite of Metrics for Scoring Step-by-Step Reasoning
  • Quantifying Memorization Across Neural Language Models
  • Mass-Editing Memory in a Transformer
  • Multi-lingual Evaluation of Code Generation Models
  • STREET: A MULTI-TASK STRUCTURED REASONING AND EXPLANATION BENCHMARK
  • Leveraging Large Language Models for Multiple Choice Question Answering
  • Broken Neural Scaling Laws
  • Language models are multilingual chain-of-thought reasoners
  • Language Models are Realistic Tabular Data Generators
  • Task Ambiguity in Humans and Language Models
  • Discovering Latent Knowledge in Language Models Without Supervision
  • Prompting GPT-3 To Be Reliable
  • Large language models are few-shot clinical information extractors
  • How Large Language Models are Transforming Machine-Paraphrase Plagiarism
  • Neural Theory-of-Mind? On the Limits of Social Intelligence in Large LMs
  • SLING: Sino Linguistic Evaluation of Large Language Models
  • A Systematic Investigation of Commonsense Knowledge in Large Language Models
  • Lexical Generalization Improves with Larger Models and Longer Training
  • What do Large Language Models Learn beyond Language?
  • Probing for Understanding of English Verb Classes and Alternations in Large Pre-trained Language Models

多推荐


综述:扩散模型在文本生成中的应用


GPT-4之高考评测



EMNLP 2022 | ELMER: 高效强大的非自回归预训练文本生成模型

点击下方“阅读原文”前往知乎专栏
↓↓↓

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存