查看原文
其他

人教版数学七年级下册6.3《实数》精讲

学习目标

__


①  了解无理数和实数的概念以及实数的分类;

②  知道实数与数轴上的点具有一一对应的关系。

电子课本

__

点击图片查看大图

▼▼▼

知识点

__

一、实数的概念及分类

无理数:像前面的很多数的平方根和立方根都是无限不循环小数,无限不循环小数又叫无理数。

实数:有理数和无理数统称实数。

1、实数的分类


2、无理数

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

(1)开方开不尽的数,如

(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;

(3)有特定结构的数,如0.1010010001…等;


二、实数的倒数、相反数和绝对值   

1、相反数

实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。

数a的相反数是—a,这里a表示任意一个实数。

2、绝对值

一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,零的绝对值是0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数

如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。

4. 实数与数轴上点的关系:

每一个无理数都可以用数轴上的一个点表示出来,

数轴上的点有些表示有理数,有些表示无理数,

实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。


三、科学记数法和近似数   

1、有效数字

一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

2、科学记数法

把一个数写做±a×10n的形式,其中1≤a<10,n是整数,这种记数法叫做科学记数法。

微课精讲

__

第一课时

第二课时

第三课时

图文解读

__

点击图片查看大图

▼▼▼

同步练习

__


答案:

人教数学七年级下册微课目录

第五章 相交线与平行线
5.1《相交线》
5.2《平行线及其判定》
5.3《平行线的性质》
第六章 实数第七章 平面直角坐标系第八章 平面直角坐标系第九章 不等式与不等式组第十章 数据的收集、整理与描述


免责声明:本文所有图文、音视频均来自网络,仅供学习交流使用,版权归原作者所有,除非无法确认,我们都会标明作者及出处,如有侵权烦请告知,我们会立即删除并表示歉意。谢谢! 

        

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存