人教版七年级数学下册6.3《实数》微课视频+学案+课堂练习
微课视频
精讲视频(一)
精讲视频(二)
教学知识点
实数的运算顺序:
先算乘方和开方,再算乘除,最后算加减。如果遇到括号,则先进行括号里的运算
教学设计
6.3.1实数
第一课时
【教学目标】
知识与技能:
① 了解无理数和实数的概念以及实数的分类;
② 知道实数与数轴上的点具有一一对应的关系。
过程与方法:
在数的开方的基础上引进无理数的概念,并将数从有理数的范围扩充到实数的范围,从而总结出实数的分类,接着把无理数在数轴上表示出来,从而得到实数与数轴上的点是一一对应的关系。
情感态度与价值观:
① 通过了解数系扩充体会数系扩充对人类发展的作用;
② 敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题。
教学重点:
① 了解无理数和实数的概念;
② 对实数进行分类。
教学难点:对无理数的认识。
【教学过程】
一、复习引入无理数:
利用计算器把下列有理数写成小数的形式,它们有什么特征?
发现上面的有理数都可以写成有限小数或无限循环小数的形式
即:
归纳:任何一个有理数(整数或分数)都可以写成有限小数或者无限循环小数的形式,
反过来,任何有限小数或者无限循环小数也都是有理数。
通过前面的学习,我们知道有很多数的平方根或立方根都是无限不循环小数,
把无限不循环小数叫做无理数。
比如等都是无理数。…也是无理数。
二、实数及其分类:
1、实数的概念:有理数和无理数统称为实数。
2、实数的分类:按照定义分类如下:
实数
按照正负分类如下:
实数
3、实数与数轴上点的关系:
我们知道每个有理数都可以用数轴上的点来表示。物理是合乎是否也可以用数轴上的点表示出来吗?
活动1:直径为1个单位长度的圆其周长为π,把这个圆放在数轴上,圆从原点沿数轴向右滚动一周,圆上的一点由原点到达另一个点,这个点的坐标就是π,由此我们把无理数π用数轴上的点表示了出来。
活动2:在数轴上,以一个单位长度为边长画一个正方形,则其对角线的长度就是以原点为圆心,正方形的对角线为半径画弧,与正半轴的交点就表示,与负半轴的交点就是。事实上通过这种做法,我们可以把每一个无理数都在数轴上表示出来,即数轴上有些点表示无理数。
归纳:①实数与数轴上的点是一一对应的。即没一个实数都可以用数轴上的点来表示;
反过来,数轴上的每一个点都表示一个实数。
②对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大。
三、应用:
四、随堂练习:
1、判断下列说法是否正确:
⑴无限小数都是无理数;
⑵无理数都是无限小数;
⑶带根号的数都是无理数;
⑷所有的有理数都可以用数轴上的点来表示,反过来,数轴上所有的点都表示有理数;
⑸所有实数都可以用数轴上的点来表示,反过来,数轴上的所有的点都表示实数。
2、把下列各数分别填在相应的集合里:
,,,,,,,,。
3、比较下列各组实数的大小:
(1), (2)π, (3) (4)
五、课堂小结
1、无理数、实数的意义及实数的分类. 2、实数与数轴的对应关系 .
六、布置作业
P57习题6.3第1、2、3题;
教学反思:
课时训练
实数(一)
学习要求
了解无理数和实数的意义;了解有理数的概念、运算在实数范围内仍适用
课堂学习检测
一、填空题
1.______叫无理数,______统称实数.
2.______与数轴上的点一一对应.
3.把下列各数填入相应的集合:
(1)有理数集合{ };
(2)无理数集合{ };
(3)正实数集合{ };
(4)负实数集合{ }.
参考答案
6.3《实数》
无限不循环小数,有理数和无理数
2.实数
喜欢我,就关注我吧!每天不一样的精品课程哦!
觉得不错,点个“在看”~
▼▼▼