八年级数学下册18.2.1《矩形》微课+知识点+同步练习
电子教材
点击图片,查看大图
▼▼▼▼
微课视频
矩形的性质课时1:
矩形的判定课时2:
知识点讲解
18.2.1 矩形
教学目标:
1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.
2.会初步运用矩形的概念和性质来解决有关问题.
3.渗透运动联系、从量变到质变的观点.
4.理解并掌握矩形的判定方法.
5.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力
重点、难点
1.重点:矩形的性质.
2.难点:矩形的性质的灵活应用.
同步练习
19.2特殊的平行四边形课时练
课时一:
1.矩形具有而平行四边形不具有的性质是( )
A.对边相等 B.对角相等 C.对角互补 D.对角线平分
2.直角三角形中,两直角边长分别为12和5,则斜边中线长是( )
A.26 B.13 C.8.5 D.6.5
3.矩形ABCD对角线AC、BD交于点O,AB=5则△ABO的周长为等于
.
4. 如图所示,四边形ABCD为矩形纸片.把纸片ABCD折叠,
使点B恰好落在CD边的中点E处,折痕为AF.若CD=6,
则AF等于( )
5. 如图所示,矩形的对角线和相交于点,
过点的直线分别交和于点E、F,,
则图中阴影部分的面积为 .
课时二:
1.如图,在菱形ABCD中,对角线AC、BD相交于点O,E为BC的
中点,则下列式子中一定成立的是( )
A.AC=2OE B.BC=2OE
C.AD=OE D.OB=OE
2.如图,在菱形ABCD中,不一定成立的( )
A.四边形ABCD是平行四边形
B.AC⊥BD
C.△ABD是等边三角形
D.∠CAB=∠CAD
3.如图,如果要使成为一个菱形,
需要添加一个条件,那么你添加的条件是 .
4. 菱形的两条对角线长分别是6和8,则菱形的边长为 。
5.□ABCD的对角线相交于点O,分别添加下列条件:①AC⊥BD;②AB=BC;③AC平分∠BAD;④AO=DO,使得□ABCD是菱形的条件有( )
A.1个 B.2个 C.3个 D.4个
6.菱形的周长为20,一条对角线长为8,则菱形的面积为 .
7.在四边形ABCD中,对角线AC、BD交于点O,从(1)AB=CD;(2)AB∥CD;(3)OA=OC;(4)OB=OD;(5)AC⊥BD;(6)AC平分∠BAD这六个条件中,选取三个推出四边形ABCD是菱形。如(1)(2)(5)ABCD是菱形,再写出符合要求的两个:________ABCD是菱形;________ABCD是菱形。
8.如图所示,AD是△ABC的角平分线.DE∥AC交AB于E,DF∥AB交AC于F.四边形AEDF是菱形吗?说明你的理由.
参考答案:
课时一答案:
1.C;2.D,提示:由勾股定理求得斜边为:,斜边的中线长为;3.18,提示:AB=5,BC=12,AC=13,;4. A,提示:DE=3,AB=AE=6,在直角三角形ADE中,∠DAE=30,由折叠的性质得∠BAF=∠EAF=30,设BF=,则AF=2,;5.3;6.14;
7证明:∵四边形ABCD为矩形,∴AC=BD,BO=CO,
∵,,∴∠BEO=∠CFO=90,又∵∠BOE=∠COF
∴BE=CF
8.连接AC、BD,AC与BD相交于点O,连接OE
在□ABCD中,AO=OC,BO=DO. 在中,OE=,
在中,OE=,∴BD=AC, ∴□ABCD为矩形.
9.猜想结果:图2结论S△PBC=S△PAC+S△PCD;
图3结论S△PBC=S△PAC-S△PCD
证明:如图2,过点P作EF垂直AD,分别交AD、BC于E、F两点.
∵ S△PBC=BC·PF=BC·PE+BC·EF
=AD·PE+BC·EF=S△PAD+S矩形ABCD
S△PAC+S△PCD=S△PAD+S△ADC=S△PAD+S矩形ABCD
∴ S△PBC=S△PAC+S△PCD
10. (1)证明:∵MN∥BC,∴∠BCE=∠CEO又∵∠BCE=∠ECO
∴∠OEC=∠OCE,∴OE=OC,同理OC=OF,∴OE=OF
(2)当O为AC中点时,AECF为矩形,∵EO=OF(已证),OA=OC
∴AECF为平行四边形,又∵CE、CF为△ABC内外角的平分线
∴∠EOF=90°,∴四边形AECF为矩形
课时二答案:
1. B;2. C; 3.答案不唯一:等;4.5;5.C;6.24,提示:由已知得菱形一边长为5,由菱形的对角线互相平分且垂直,所以另一条对角线的长为,∴S菱=;7.①②⑥或③④⑤或③④⑥;
8.四边形AEDF是菱形,∵DE∥AC,∴∠ADE=∠DAF,
∵AD是△ABC的角平分线,
∴∠DAE=∠DAF,∴∠ADE=∠DAE,∴AE=ED.
又∵DE∥AC,DF∥AB
∴四边形AEDF是平行四边形,∴平行四边形AEDF是菱形.
9. □AFCE是菱形,△AOE≌△COF,四边形AFCE是平行四边形,EF⊥AC
10.. 解:(1)∵四边形ABCD是平行四边形,∴∠1=∠C,AD=CB,AB=CD .
∵点E 、F分别是AB、CD的中点,∴AE=AB ,CF=CD .
∴AE=CF .∴△ADE≌△CBF .
(2)当四边形BEDF是菱形时,四边形 AGBD是矩形.
∵四边形ABCD是平行四边形,∴AD∥BC .
∵AG∥BD ,∴四边形 AGBD 是平行四边形.
∵四边形 BEDF 是菱形,
∴DE=BE .∵AE=BE ,
∴AE=BE=DE .
∴∠1=∠2,∠3=∠4.
∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°.
∴∠2+∠3=90°.
即∠ADB=90°.
∴四边形AGBD是矩形.