人教版八年级数学上册第11.1.1节《三角形的边》微课视频|知识点|练习
电子课本
点击图片,查看大图
▼▼▼▼
微课视频
微课视频1:
更的多精彩视频,同学们可以选择观看哦!
微课视频2:
知识点讲解
素养目标:
1. 掌握三角形的有关概念,会用符号表示三角形,会对三角形进行分类。
2. 理解“三角形中任意两边的和大于第三边”的含义,并能运用它解决简单的实际问题.
3.培养学生的观察、分析、比较、操作能力,进一步发展空间观念,提高学生的探索能力.
同步练习
11.1.1三角形的边
基础知识
一、选择题
1.下列图形中三角形的个数是( )
A.4个 B.6个 C.9个 D.10个
答案:D
2.下列长度的三条线段,能组成三角形的是( )
A.1cm,2 cm,3cm B.2cm,3 cm,6 cm
C.4cm,6 cm,8cm D.5cm,6 cm,12cm
【答案】C
3.已知三条线段的比是:①1:3:4;②1:4:6;③3:3:6;④6:6:10;⑤3:4:5.其中可构成三角形的有( )
A.1个 B.2个 C.3个 C.4个
【答案】B
4.(2012浙江义乌)如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是【 】
A.2B.3C.4D.8
【答案】C
5.(2012广东汕头)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是【 】
A.5 B.6 C.11 D.16
【答案】C
6.(2013•宜昌)下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( )
A.1,2,6 B.2,2,4 C.1,2,3 D.2,3,4
【答案】D
7.已知等腰三角形的周长为24,一边长是4,则另一边长是( )
A.16 B.10 C. 10或16 D. 无法确定
【答案】B
8.有四根长度分别为6cm,5cm,4cm,1cm的木棒,选择其中的三根组成三角形,则可选择的种数有( )
A. 4 B.3 C.2 D.1
【答案】D
9.(2013•南通)有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为( )
A.1 B.2 C.3 D.4
【答案】C
10.(2013•海南)一个三角形的三条边长分别为1、2、x,则x的取值范围是( )
A.1≤x≤3 B.1<x≤3 C.1≤x<3 D.1<x<3
【答案】D
11.如果三角形的两边长分别为3和5,则周长L的取值范围是( )
A. 6<L<15 B. 6<L<16 C.11<L<13 D.10<L<16
【答案】D
12.在下列长度的四根木棒中,能与4cm、9cm两根木棒围成一个三角形是( )
A、4cm B、5cm C、13cm D、9cm
【答案】D
13.已知等腰三角形的两边长分别为4、9,则它的周长为( )
A.22 B.17 C.17或22 D.13
【答案】A
二、填空题
1.如图,图中有 个三角形,它们分别是 .
【答案】
6;△AEG, △AEF, △AFG, △ABC, △ABD, △ACD
2.若五条线段的长分别是1cm,2cm,3cm,4cm,5cm,则以其中三条线段为边可构成______个三角形.
【答案】3
3.△ABC的周长是12cm ,边长分别为a ,b , c , 且 a=b+1 , b=c+1 ,则a= cm , b= cm , c= cm.
【答案】5,4,3
4.在△ABC中,AB=5,AC=7,那么BC的长的取值范围是_______.
【答案】2<BC<12
5.若等腰三角形的腰长为6,则它的底边长a的取值范围是________;若等腰三角形的底边长为4,则它的腰长b的取值范围是_______.
【答案】0<a<12, b>2
三、解答题
1.已知三角形三边的比是3:4:5,且最大边长与最小边长的差是4,求这个三角形的三边的长.
【答案】
设每一份长为xcm,根据题意,可列方程
5x-3x=4
解得 x=2
所以三角形的三边分别是6cm,8cm,10cm.
【答案】
因为︱a-1︱≥0,(2a+3b-11)≥0,又︱a-1︱+(2a+3b-11)=0,
所以a-1=0, 2a+3b-11=0,解得 a=1,b=3,当a=1为腰时,三边为 1,1,3,不构成三角形,当b=3为腰时,三边为3,3,1,此时周长为3+3+1=7.
3.如图,用火柴棒摆出一系列三角形图案,按这种方式摆下去,当摆到20层(n=20)时,需要多少根火柴?
解:3(1+2+3+…+20)=630
4.如图,在⊿ABC中,BC边上有n个点(包括B,C两点),则图中共有 个三角形.
能力提升
1.已知三角形的三边长分别为2,x-3,4,求x的取值范围.
解:4-2<x-3<4+2
5<x<9
2.若a、b、c是△ABC的三边,请化简|a-b-c|+|b-c-a|+|c-a-b|.
解:原式=(b+c-a)+(a+c-b)+(a+b-c)=a+b+c
3.如图,点P是⊿ABC内一点,试证明:AB+AC>PB+PC.
解:延长BP交AC于点D.
在⊿ABD中,
AB+AD>BP+PD
在⊿PDC中,
DP+DC>PC
+得
AB+AC>PB+PC