查看原文
其他

SIGIR 2019 开源论文 | 基于图神经网络的协同过滤算法

纪厚业 PaperWeekly 2021-09-10


作者丨纪厚业

单位丨北京邮电大学博士生

研究方向丨异质图神经网络,异质图表示学习和推荐系统




引言


协同过滤作为一种经典的推荐算法在推荐领域有举足轻重的地位。协同过滤(collaborative filtering)的基本假设是相似的用户会对物品展现出相似的偏好。
总的来说,协同过滤模型主要包含两个关键部分:1)embedding,即如何将 user 和 item 转化为向量表示;2)interaction modeling,即如何基于 user 和 item 的表示来重建它们的历史交互。
传统协同过滤算法(如经典的矩阵分解和神经矩阵分解)本质还是给 user 和 item 初始化一个 embedding,然后利用交互信息来优化模型。它们并没有把交互信息编码进 embedding 中,所以这些 embedding 都是次优的。


直观地理解,如果能将 user-item 的交互信息编码进 embedding 中,将提升 embedding 的表示能力进而提升模型的预测能力。本文的主要创新点在于利用二部图神经网络将 User-Item 的历史交互信息编码进 Embedding 进而提升推荐效果。更重要的是,本文显式地考虑 User-Item 之间的高阶连接性来进一步提升 embedding 的表示能力。


图 1 展示了一个 user-item 的二部图及 u1 的高阶连接性。u1 的高阶连接性表示 u1 通过长度大于 1 的路径连接到的节点。例如,u1 通过长度 l=2 的路径连接到 u2 和 u3,这代表 u1 的 2 阶连接性;u1 通过长度 l=3 的路径连接到 i4,i5,这代表 u1 的 3 阶连接性。需要注意的是,虽然 i4 和 i5 都是 u1 的 3 阶邻居,但是 i4 可以通过更多的路径连接到 u1,所以 i4 与 u1 的相似度更高。

模型


模型主要分为 3 个部分:1)Embedding Layer:将 user 和 item 的 ID 映射为向量表示;2)Embedding Propagation Layers:将初始的 user 和 item 表示基于图神经网络来更新;3)Prediction:基于更新后的 user 和 item 表示来进行预测。模型架构图见 Figure 2。


Embedding Layer


这里对 User 和 Item 分别初始化相应的 Embedding Matrix,然后通过 User 或者 Item 的 ID 进行 Embedding Lookup 将它们映射到一个向量表示。



注意,这里初始化的 Embedding 可以认为是 0 阶表示,即


Embedding Propagation Layers


受 GNN 的 message-passing 架构的启发,NGCF 针对 User-Item 二部交互图设计了 Embedding Propagation 来学习 User 和 Item 的表示。这里作者首先详细的描述了一阶传播,然后泛化到高阶传播。


一阶传播主要包含:消息构建和消息聚合。给定(u,i),从 i 传播到 u 的消息可以定义为:




其中,都是可学习的参数矩阵,分别代表 u 和 i 的度。这里 可以理解为归一化系数。


基于上面构建的消息,下一步就是聚合消息来更新节点表示:



其中,代表经过 1 次聚合之后的节点表示。因为单层的消息聚合只能聚合 1 阶邻居的信息,所以这里实际代表了 u 的一阶表示。需要注意的是,这里除了聚合邻居的信息,更重要的是考虑节点自身的信息


高阶传播实际就是将上述的一阶传播堆叠多层。这样经过 l 次聚合,每个节点都会融合其 l 阶邻居的信息,也就得到了节点的 l 阶表示



Figure 3 清晰地展示了如何在高阶传播中融合高阶邻居的信息。


上面的传播过程也可以写成矩阵的形式,这样在代码实现的时候可以高效的对节点 Embedding 进行更新。


其中,是 l 阶的 user 和 item 的表示,是 user-item 交互矩阵,D 是对角度矩阵。
Model Prediction
模型的预测非常简单,将 L 阶的节点表示分别拼接起来作为最终的节点表示,然后通过内积进行预测。


实际这里采用了类似 18 ICML Representation Learning on Graphs with Jumping Knowledge Networks 的做法来防止 GNN 中的过平滑问题。GNN 的过平滑问题是指,随着 GNN 层数增加,GNN 所学习的 Embedding 变得没有区分度。过平滑问题与本文要捕获的高阶连接性有一定的冲突,所以这里需要在克服过平滑问题。


最终的损失函数就是经典的 BPR 损失函数:


实验


本文在 Gowalla、Yelp2018 和 Amazon-Book 上进行了大量实验来回答以下 3 个问题:


  • 和 state-of-the-art 的方法相比,NGCF 的效果如何?

  • 模型对于超参数(如模型层数,dropout)的敏感性。

  • 高阶连接性对于模型的影响。



本文的 baseline 主要可以分为两大类:非图神经网络的推荐算法(如 MF 和 CMN)和基于图神经网络的推荐算法(PinSage 和 GC-MC)。实验效果如 Table 2 所示:


可以看出,本文所提出的 NGCF 优势很明显,尤其是在 recall 上的提升均超过 10%。同时,作者还对数据进行了稀疏化并进一步验证来说明 NGCF 来稀疏数据上的优势。


从 Figure 4 可以看出,NGCF 在数据稀疏度较高的时候有明显优势,随着稀疏度的下降,NGCF 的优势越来越小甚至被 baseline 超过了。


另外,作者验证了模型层数、卷积形式和 dropout 对 NGCF 的影响,具体见 Table 3、Table 4 和 Figure 5。




最后,作者研究了高阶连接性对 NGCF 的影响,如 Figure 6 所示。


注意这里 MF 可以看做是 NGCF-0。可以看出,随着阶数的增加,相同颜色的节点更好的聚集在一起。也就是说,高阶连接性确实有助于学习 User 和 Item 的 Embedding。

结论


本文提出了基于图神经网络的协同过滤算法 NGCF,它可以显式地将 User-Item 的高阶交互编码进 Embedding 中来提升 Embedding 的表示能力进而提升整个推荐效果。
NGCF 的关键就在于 Embedding Propagation Layer 来学习 User 和 Item 的 Embedding,后面的预测部分只是简单的内积。可以说,NGCF 较好地解决了协同过滤算法的第一个核心问题。
另外,本文的 Embedding Propagation 实际上没有考虑邻居的重要性,如果可以像 Graph Attention Network 在传播聚合过程中考虑邻居重要性的差异,NGCF 的效果应该可以进一步提升。


参考文献


[1] http://staff.ustc.edu.cn/~hexn/slides/sigir19-ngcf-slides.pdf[2] https://github.com/xiangwang1223/neural_graph_collaborative_filtering 





点击以下标题查看更多往期内容: 





#投 稿 通 道#

 让你的论文被更多人看到 



如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。


总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 


PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学习心得技术干货。我们的目的只有一个,让知识真正流动起来。


📝 来稿标准:

• 稿件确系个人原创作品,来稿需注明作者个人信息(姓名+学校/工作单位+学历/职位+研究方向) 

• 如果文章并非首发,请在投稿时提醒并附上所有已发布链接 

• PaperWeekly 默认每篇文章都是首发,均会添加“原创”标志


📬 投稿邮箱:

• 投稿邮箱:hr@paperweekly.site 

• 所有文章配图,请单独在附件中发送 

• 请留下即时联系方式(微信或手机),以便我们在编辑发布时和作者沟通




🔍


现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧



关于PaperWeekly


PaperWeekly 是一个推荐、解读、讨论、报道人工智能前沿论文成果的学术平台。如果你研究或从事 AI 领域,欢迎在公众号后台点击「交流群」,小助手将把你带入 PaperWeekly 的交流群里。


▽ 点击 | 阅读原文 | 下载论文 & 源码

: . Video Mini Program Like ,轻点两下取消赞 Wow ,轻点两下取消在看

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存