查看原文
其他

入门必备!生物医学命名实体识别(BioNER)最全论文清单,附SOTA结果汇总

罗凌 PaperWeekly 2022-03-17

作者丨罗凌

学校丨大连理工大学博士

研究方向丨深度学习、文本分类


本人将之前整理的一些生物医学命名实体识别相关的论文做了一个 BioNER Progress 放在了 Github 上。主要内容包括 BioNER 进展中的代表论文列表,以及目前各个主要数据集上的一些先进结果和相关论文,希望对入门 BioNER 的同学有所帮助。

Github地址:
https://github.com/lingluodlut/BioNER-Progress


生物医学命名实体识别(Biomedical Named Entity Recognition, BioNER)相关进展,BioNER Progress 主要内容包括两部分:1)BioNER 进展中的代表论文列表(Papers);2)目前各个主要数据集上的一些先进结果和相关论文(SOTA)。 

其中,论文列表首先给出一些综述论文,然后根据 BioNER 研究的发展历程依次给出了基于词典,基于规则和基于机器学习方法的代表性工作。机器学习的方法又细分为了基于传统机器学习模型(SVM、HMM、MEMM 和 CRF 模型)以及现在主流的神经网络方法。

此外,SOTA 给出了目前各个主要数据集上的一些先进结果。根据实体类型的不同包括化学药物(Chemical)、疾病(Disease)、基因蛋白(Gene/Protein)、基因变异(Mutation)和物种(Species)的实体识别。



必读论文


▶▷ 综述论文

Overview of BioCreative II gene mention recognition. Smith L, Tanabe L K, nee Ando R J, et al. Genome biology, 2008, 9(2): S2. 

https://genomebiology.biomedcentral.com/articles/10.1186/gb-2008-9-s2-s2


Biomedical named entity recognition: a survey of machine-learning tools. Campos D, Matos S, Oliveira J L. Theory and Applications for Advanced Text Mining, 2012: 175-195. 

https://books.google.com.hk/books?hl=zh-CN&lr=&id=EfqdDwAAQBAJ&oi=fnd&pg=PA175&ots=WEKIblRekC&sig=FWoufJtWVSDHD3gbWaZXruEOiEs&redir_esc=y#v=onepage&q&f=false


Chemical named entities recognition: a review on approaches and applications. Eltyeb S, Salim N. Journal of cheminformatics, 2014, 6(1): 17. 

https://jcheminf.biomedcentral.com/articles/10.1186/1758-2946-6-17


CHEMDNER: The drugs and chemical names extraction challenge. Krallinger M, Leitner F, Rabal O, et al. Journal of cheminformatics, 2015, 7(1): S1. 

https://jcheminf.biomedcentral.com/articles/10.1186/1758-2946-7-S1-S1


A comparative study for biomedical named entity recognition. Wang X, Yang C, Guan R. International Journal of Machine Learning and Cybernetics, 2015, 9(3): 373-382. 

https://link.springer.com/article/10.1007/s13042-015-0426-6

▷▶ 基于词典的方法

Using BLAST for identifying gene and protein names in journal articles. Krauthammer M, Rzhetsky A, Morozov P, et al. Gene, 2000, 259(1-2): 245-252. 

https://www.sciencedirect.com/science/article/pii/S0378111900004315


Boosting precision and recall of dictionary-based protein name recognition. Tsuruoka Y, Tsujii J. Proceedings of the ACL 2003 workshop on Natural language processing in biomedicine-Volume 13, 2003: 41-48. 

https://aclanthology.info/pdf/W/W03/W03-1306.pdf


Exploiting the performance of dictionary-based bio-entity name recognition in biomedical literature. Yang Z, Lin H, Li Y. Computational Biology and Chemistry, 2008, 32(4): 287-291.

https://www.sciencedirect.com/science/article/pii/S1476927108000340


A dictionary to identify small molecules and drugs in free text. Hettne K M, Stierum R H, Schuemie M J, et al. Bioinformatics, 2009, 25(22): 2983-2991. 

https://academic.oup.com/bioinformatics/article-abstract/25/22/2983/180399
https://biosemantics.org/index.php/resources/jochem


LINNAEUS: a species name identification system for biomedical literature. Gerner M, Nenadic G, Bergman C M. BMC bioinformatics, 2010, 11(1): 85. 

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-85

▷▶ 基于规则的方法

Toward information extraction: identifying protein names from biological papers. Fukuda K, Tsunoda T, Tamura A, et al. Pac symp biocomput. 1998, 707(18): 707-718. 

https://pdfs.semanticscholar.org/335e/8b19ea50d3af6fcefe6f8421e2c9c8936f3f.pdf


A biological named entity recognizer. Narayanaswamy M, Ravikumar K E, Vijay-Shanker K. Biocomputing 2003. 2002: 427-438.

https://www.worldscientific.com/doi/abs/10.1142/9789812776303_0040


ProMiner: rule-based protein and gene entity recognition. Hanisch D, Fundel K, Mevissen H T, et al. BMC bioinformatics, 2005, 6(1): S14. 

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-6-S1-S14


MutationFinder: a high-performance system for extracting point mutation mentions from text. Caporaso J G, Baumgartner Jr W A, Randolph D A, et al. Bioinformatics, 2007, 23(14): 1862-1865. 

https://academic.oup.com/bioinformatics/article/23/14/1862/188647
http://mutationfinder.sourceforge.net/


Drug name recognition and classification in biomedical texts: a case study outlining approaches underpinning automated systems. Segura-Bedmar I, Martínez P, Segura-Bedmar M. Drug discovery today, 2008, 13(17-18): 816-823. 

https://www.sciencedirect.com/science/article/pii/S1359644608002171


Investigation of unsupervised pattern learning techniques for bootstrap construction of a medical treatment lexicon. Xu R, Morgan A, Das A K, et al. Proceedings of the workshop on current trends in biomedical natural language processing, 2009: 63-70. 

http://www.aclweb.org/anthology/W09-1308


Linguistic approach for identification of medication names and related information in clinical narratives. Hamon T, Grabar N. Journal of the American Medical Informatics Association, 2010, 17(5): 549-554. 

https://academic.oup.com/jamia/article/17/5/549/831598


SETH detects and normalizes genetic variants in text. Thomas P, Rocktäschel T, Hakenberg J, et al. Bioinformatics, 2016, 32(18): 2883-2885. 

https://academic.oup.com/bioinformatics/article/32/18/2883/1743171
http://rockt.github.io/SETH/

PENNER: Pattern-enhanced Nested Named Entity Recognition in Biomedical Literature. Wang X, Zhang Y, Li Q, et al. 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 2018: 540-547. 

https://ieeexplore.ieee.org/abstract/document/8621485/

▷▶ 基于机器学习的方法

SVM-based Methods

Tuning support vector machines for biomedical named entity recognition. Kazama J, Makino T, Ohta Y, et al. Proceedings of the ACL-02 workshop on Natural language processing in the biomedical domain-Volume 3, 2002: 1-8. 

https://aclanthology.info/pdf/W/W02/W02-0301.pdf


Biomedical named entity recognition using two-phase model based on SVMs. Lee K J, Hwang Y S, Kim S, et al. Journal of Biomedical Informatics, 2004, 37(6): 436-447. 

https://www.sciencedirect.com/science/article/pii/S1532046404000863


Exploring deep knowledge resources in biomedical name recognition. GuoDong Z, Jian S. Proceedings of the International Joint Workshop on Natural Language Processing in Biomedicine and its Applications, 2004: 96-99. 

https://aclanthology.info/pdf/W/W04/W04-1219.pdf

HMM-based Methods

Named entity recognition in biomedical texts using an HMM model. Zhao S. Proceedings of the International Joint Workshop on Natural Language Processing in Biomedicine and its Applications, 2004: 84-87.

https://aclanthology.info/pdf/W/W04/W04-1216.pdf


Annotation of chemical named entities. Corbett P, Batchelor C, Teufel S. Proceedings of the Workshop on BioNLP 2007: Biological, Translational, and Clinical Language Processing, 2007: 57-64. 

https://aclanthology.info/pdf/W/W07/W07-1008.pdf


Conditional random fields vs. hidden markov models in a biomedical named entity recognition task. Ponomareva N, Rosso P, Pla F, et al. Proc. of Int. Conf. Recent Advances in Natural Language Processing, RANLP. 2007, 479: 483.

http://clg.wlv.ac.uk/papers/Ponomareva-RANLP-07.pdf

MEMM-based Mehtods

Cascaded classifiers for confidence-based chemical named entity recognition. Corbett P, Copestake A. BMC bioinformatics, 2008, 9(11): S4. 

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-S11-S4


OSCAR4: a flexible architecture for chemical text-mining. Jessop D M, Adams S E, Willighagen E L, et al. Journal of cheminformatics, 2011, 3(1): 41.

https://jcheminf.biomedcentral.com/articles/10.1186/1758-2946-3-41

CRF-based Methods

ABNER: an open source tool for automatically tagging genes, proteins and other entity names in text. Settles B. Bioinformatics, 2005, 21(14): 3191-3192.

https://academic.oup.com/bioinformatics/article/21/14/3191/266815


BANNER: an executable survey of advances in biomedical named entity recognition. Leaman R, Gonzalez G. Biocomputing 2008. 2008: 652-663.

https://psb.stanford.edu/psb-online/proceedings/psb08/leaman.pdf


Detection of IUPAC and IUPAC-like chemical names. Klinger R, Kolářik C, Fluck J, et al. Bioinformatics, 2008, 24(13): i268-i276. 
https://academic.oup.com/bioinformatics/article-abstract/24/13/i268/235854


Incorporating rich background knowledge for gene named entity classification and recognition. Li Y, Lin H, Yang Z. BMC bioinformatics, 2009, 10(1): 223.

https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/1471-2105-10-223


A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries. Jiang M, Chen Y, Liu M, et al. Journal of the American Medical Informatics Association, 2011, 18(5): 601-606. 

https://academic.oup.com/jamia/article/18/5/601/834186


ChemSpot: a hybrid system for chemical named entity recognition. Rocktäschel T, Weidlich M, Leser U. Bioinformatics, 2012, 28(12): 1633-1640. 

https://academic.oup.com/bioinformatics/article/28/12/1633/266861


Gimli: open source and high-performance biomedical name recognition. Campos D, Matos S, Oliveira J L. BMC bioinformatics, 2013, 14(1): 54. 

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-54


tmVar: a text mining approach for extracting sequence variants in biomedical literature. Wei C H, Harris B R, Kao H Y, et al. Bioinformatics, 2013, 29(11): 1433-1439. 

https://academic.oup.com/bioinformatics/article-abstract/29/11/1433/220291
https://www.ncbi.nlm.nih.gov/research/bionlp/Tools/tmvar/


Evaluating word representation features in biomedical named entity recognition tasks. Tang B, Cao H, Wang X, et al. BioMed research international, 2014, 2014.

http://downloads.hindawi.com/journals/bmri/2014/240403.pdf


Drug name recognition in biomedical texts: a machine-learning-based method. He L, Yang Z, Lin H, et al. Drug discovery today, 2014, 19(5): 610-617. 

https://www.sciencedirect.com/science/article/pii/S1359644613003322


tmChem: a high performance approach for chemical named entity recognition and normalization. Leaman R, Wei C H, Lu Z. Journal of cheminformatics, 2015, 7(1): S3.

https://jcheminf.biomedcentral.com/articles/10.1186/1758-2946-7-S1-S3


GNormPlus: an integrative approach for tagging genes, gene families, and protein domains. Wei C H, Kao H Y, Lu Z. BioMed research international, 2015, 2015. 

http://downloads.hindawi.com/journals/bmri/2015/918710.pdf


Mining chemical patents with an ensemble of open systems[J]. Leaman R, Wei C H, Zou C, et al. Database, 2016, 2016.

https://academic.oup.com/database/article-abstract/doi/10.1093/database/baw065/2630406


nala: text mining natural language mutation mentions. Cejuela J M, Bojchevski A, Uhlig C, et al. Bioinformatics, 2017, 33(12): 1852-1858.

https://academic.oup.com/bioinformatics/article-abstract/33/12/1852/2991428

Neural Network-based Methods

Recurrent neural network models for disease name recognition using domain invariant features. Sahu S, Anand A. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. 2016: 2216-2225.

https://www.aclweb.org/anthology/P16-1209


Deep learning with word embeddings improves biomedical named entity recognition. Habibi M, Weber L, Neves M, et al. Bioinformatics, 2017, 33(14): i37-i48. 

https://academic.oup.com/bioinformatics/article/33/14/i37/3953940


A neural joint model for entity and relation extraction from biomedical text. Li F, Zhang M, Fu G, et al. BMC bioinformatics, 2017, 18(1): 198. 

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1609-9


A neural network multi-task learning approach to biomedical named entity recognition. Crichton G, Pyysalo S, Chiu B, et al. BMC bioinformatics, 2017, 18(1): 368. 

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1776-8
https://github.com/cambridgeltl/MTL-Bioinformatics-2016


Disease named entity recognition from biomedical literature using a novel convolutional neural network. Zhao Z, Yang Z, Luo L, et al. BMC medical genomics, 2017, 10(5): 73. 

https://bmcmedgenomics.biomedcentral.com/articles/10.1186/s12920-017-0316-8


An attention-based BiLSTM-CRF approach to document-level chemical named entity recognition. Luo L, Yang Z, Yang P, et al. Bioinformatics, 2018, 34(8): 1381-1388.

https://academic.oup.com/bioinformatics/article-abstract/34/8/1381/4657076
https://github.com/lingluodlut/Att-ChemdNER


GRAM-CNN: a deep learning approach with local context for named entity recognition in biomedical text. Zhu Q, Li X, Conesa A, et al. Bioinformatics, 2018, 34(9): 1547-1554. 

https://academic.oup.com/bioinformatics/article-abstract/34/9/1547/4764002

https://github.com/valdersoul/GRAM-CNN


D3NER: biomedical named entity recognition using CRF-biLSTM improved with fine-tuned embeddings of various linguistic information. Dang T H, Le H Q, Nguyen T M, et al. Bioinformatics, 2018, 34(20): 3539-3546. 

https://academic.oup.com/bioinformatics/article/34/20/3539/4990492
https://github.com/aidantee/D3NER


Transfer learning for biomedical named entity recognition with neural networks. Giorgi J M, Bader G D. Bioinformatics, 2018, 34(23): 4087-4094. 

https://academic.oup.com/bioinformatics/article/34/23/4087/5026661


Label-Aware Double Transfer Learning for Cross-Specialty Medical Named Entity Recognition. Wang Z, Qu Y, Chen L, et al. NAACL. 2018: 1-15. 

https://www.aclweb.org/anthology/N18-1001


Recognizing irregular entities in biomedical text via deep neural networks. Li F, Zhang M, Tian B, et al. Pattern Recognition Letters, 2018, 105: 105-113. 

https://www.sciencedirect.com/science/article/pii/S0167865517302155


Cross-type biomedical named entity recognition with deep multi-task learning. Wang X, Zhang Y, Ren X, et al. Bioinformatics, 2019, 35(10): 1745-1752.

https://academic.oup.com/bioinformatics/article/35/10/1745/5126922
https://github.com/yuzhimanhua/lm-lstm-crf


Improving Chemical Named Entity Recognition in Patents with Contextualized Word Embeddings. Zhai Z, Nguyen D Q, Akhondi S, et al. Proceedings of the 18th BioNLP Workshop and Shared Task. 2019: 328-338. 

https://www.aclweb.org/anthology/W19-5035
https://github.com/zenanz/ChemPatentEmbeddings


Chinese Clinical Named Entity Recognition Using Residual Dilated Convolutional Neural Network with Conditional Random Field. Qiu J, Zhou Y, Wang Q, et al. IEEE Transactions on NanoBioscience, 2019, 18(3): 306-315. 

https://ieeexplore.ieee.org/abstract/document/8678833/


A Neural Multi-Task Learning Framework to Jointly Model Medical Named Entity Recognition and Normalization. Zhao S, Liu T, Zhao S, et al. Proceedings of the AAAI Conference on Artificial Intelligence. 2019, 33: 817-824. 

https://wvvw.aaai.org/ojs/index.php/AAAI/article/download/3861/3739


CollaboNet: collaboration of deep neural networks for biomedical named entity recognition. Yoon W, So C H, Lee J, et al. BMC bioinformatics, 2019, 20(10): 249. 

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2813-6


BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Lee J, Yoon W, Kim S, et al. Bioinformatics, Advance article, 2019. 

https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btz682/5566506

https://github.com/dmis-lab/biobert


HUNER: Improving Biomedical NER with Pretraining. Weber L, Münchmeyer J, Rocktäschel T, et al. Bioinformatics, Advance article, 2019. 
https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/btz528/5523847?redirectedFrom=fulltext
https://hu-ner.github.io/

Others

TaggerOne: joint named entity recognition and normalization with semi-Markov Models. Leaman R, Lu Z. Bioinformatics, 2016, 32(18): 2839-2846. 

https://academic.oup.com/bioinformatics/article/32/18/2839/1744190
https://www.ncbi.nlm.nih.gov/research/bionlp/tools/taggerone/


A transition-based joint model for disease named entity recognition and normalization. Lou Y, Zhang Y, Qian T, et al. Bioinformatics, 2017, 33(15): 2363-2371.

https://academic.oup.com/bioinformatics/article-abstract/33/15/2363/3089942

https://github.com/louyinxia/jointRN


先进结果


▶▷ Chemical NER

CHEMDNER 

CHEMDNER (chemical compound and drug name recognition) task as part of the BioCreative IV challenge aims to promote the development of systems for the automatic recognition of chemical entities in text. It was divided into two tasks: one covered the indexing of documents with chemicals (chemical document indexing - CDI task), and the other was concerned with finding the exact mentions of chemicals in text (chemical entity mention recognition - CEM task). Here, we only focus on the CEM task. 

The CHEMDNER corpus consists of 10,000 PubMed abstracts, which contains a total of 84,355 chemical entity mentions. The original corpus is divided into training set (3,500 abstracts), development set (3,500 abstracts) and test set (3,000 abstracts).


CDR-Chemical 

CDR (chemical disease relation) task as part of the BioCreative V challenge aims to automatically extract CDRs from the literature. The CDR corpus consists of 1,500 PubMed abstracts with annotated chemicals, diseases and chemical-disease interactions, which contains a total of 15,933 chemical entity mentions. The original corpus is separated into training set (500 abstracts), development set (500 abstracts) and test set (500 abstracts).

▶▷ Disease NER

NCBI-Disease 

The NCBI Disease corpus consists of 793 PubMed abstracts separated into training (593), development (100) and test (100) subsets. It contains a total of 6,892 disease entity mentions.

 
CDR-Disease 

CDR (chemical disease relation) task as part of the BioCreative V challenge aims to automatically extract CDRs from the literature. The CDR corpus consists of 1,500 PubMed abstracts with annotated chemicals, diseases and chemical-disease interactions, which contains a total of 12,864 disease entity mentions. The original corpus is separated into training set (500 abstracts), development set (500 abstracts) and test set (500 abstracts).

▶▷ Gene/Protein NER

BC2GM 


Gene Mention Tagging task as part of the BioCreative II challenge is concerned with the named entity extraction of gene and gene product mentions in text. The BC2GM corpus contains a total of 24,583 gene entity mentions.


JNLPBA 

JNLPBA corpus contains 2,404 abstracts extracted from MEDLINE using the MeSH terms “human”, “blood- cell” and “transcription factor”. The manual annotation of these abstracts was based on five classes of the GENIA ontology, namely protein, DNA, RNA, cell line, and cell type. This corpus was used in the Bio-Entity Recognition Task in BioNLP/NLPBA 2004, providing 2,000 abstracts for training and the remaining 404 abstracts for testing. The overall results are shown in the following table.

▶▷ Mutation NER

MuatationFinder corpus and tmVar corpus 

The MutationFinder corpus was established to guide the construction of the patterns. The development data set is made up of 605 point mutation mentions in 305 abstracts selected randomly from primary citations in PDB. The evaluation data set is made up of 910 point mutation mentions in 508 abstracts annotated by two of the authors, not involved in the development of the system. 

The tmVar corpus comprises 500 abstracts manually annotated from which 334 were used for training tmVar while the remaining 166 were used for testing it.

▶▷ Species NER

LINNAEUS corpus 

The LINNAEUS corpus: A set of open access documents in text format, manually annotated for species mention tags. It consists of 100 full-text documents from the PMC OA document, which contains a total of 4,259 species entity mentions.



🔍

现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧



关于PaperWeekly


PaperWeekly 是一个推荐、解读、讨论、报道人工智能前沿论文成果的学术平台。如果你研究或从事 AI 领域,欢迎在公众号后台点击「交流群」,小助手将把你带入 PaperWeekly 的交流群里。


▽ 点击 | 阅读原文 | 收藏论文清单

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存