我们开发了一种系统的方法来研究量子游走混合(quantum walk mixing)的复杂度,并揭示了对于任何可逆的经典马尔可夫链,只要初始分布满足热启动条件,我们就可以获得混合时间(mixing time)的平方加速。特别地,我们将量子行走和量子退火(quantum annealing)应用于朗之万动力学并实现多项式量子加速。下面简单介绍我们的技术贡献。
3. 量子梯度估计(quantum gradient estimation)。我们将 Jordan 的量子梯度算法应用于我们的量子算法,并给出严格的证明来限制由于梯度估计误差引起的采样误差。
参考文献
[1] Andrew M. Childs, Tongyang Li, Jin-Peng Liu, Chunhao Wang, and Ruizhe Zhang, "Quantum Algorithms for Sampling Log-Concave Distributions and Estimating Normalizing Constants," to appear in NeurIPS 2022. [2] Rong Ge, Holden Lee, and Jianfeng Lu, "Estimating normalizing constants for log-concave distributions: Algorithms and lower bounds," STOC 2020. [3] Xiang Cheng, Niladri S. Chatterji, Peter L. Bartlett, and Michael I. Jordan, "Underdamped langevin mcmc: A non-asymptotic analysis," COLT 2018. [4] Yin Tat Lee, Ruoqi Shen, and Kevin Tian, "Logsmooth gradient concentration and tighter runtimes for metropolized Hamiltonian Monte Carlo," COLT 2020. [5] Ruoqi Shen and Yin Tat Lee, "The randomized midpoint method for log-concave sampling," NeurIPS 2019. [6] Keru Wu, Scott Schmidler, and Yuansi Chen, "Minimax mixing time of the Metropolis-adjusted Langevin algorithm for log-concave sampling," 2021, arXiv:2109.13055.