GPT-3剪枝算法来了!无需微调,1750亿参数模型剪50%还提点
©Paperweekly 原创 · 作者 | An.
单位 | 中科院自动化所
研究方向 | 计算机视觉、模型压缩
论文链接:
本文提出了首个可以在千亿参数模型上高效准确工作的一次性剪枝算法——SparseGPT。该方法将剪枝问题简化为极大规模的稀疏回归问题,并设计了一个新的近似稀疏回归求解器,也解决分层剪枝问题。
千亿参数的剪枝挑战
以 chatGPT 为代表的大型语言模型(LLMs)取得了让世人瞩目的成果,但其庞大的规模和计算成本导致了极高的“入场费”。OpenAI 的 chatGPT 模型包含 1750 亿个参数,单是推理就需要至少 5 个 80GB 显存的 A100 GPU (保守估计至少 43 万元),更不用说研究所需要的训练。因此对大规模预训练模型的压缩十分重要且必要。
模型剪枝已在较小规模的模型(例如 BERT、ViT)中取得了很好的压缩效果。然而,表现最好的剪枝方法都需要对模型进行大量的再训练,以恢复删除元素造成的性能下降。正如上文所提到的,这一做法在 GPT 规模的模型上的代价极其昂贵。
快速近似重建
2.1 不同行海森矩阵的不一致问题
▲ 图1. 不同行海森矩阵的不一致问题(红、绿、蓝对应三行的掩码,掩码的不同导致掩码海森矩阵的不同)
2.2 基础:最优脑手术算法 OBS
2.3 等价迭代视角
▲ 图2. SparseGPT 重建算法的可视化流程
2.4 计算复杂度
自适应掩码选择
第 2 节只考虑了权重重建过程(算法的计算量主要也集中于此)。对于掩码选择阶段,常见的方法是利用某种重要性指标来选取掩码,例如 AdaPrune [1]。然而,最近的工作 [2] 表明,在修剪过程中更新权重会导致重要性的显著变化,如果能在掩码选择阶段考虑这一影响将获得更准确的结果。因此 SparseGPT 设计了一种能在权重重建过程中自适应选择掩码的方法。
▲ 图3. 自适应掩码选择策略
1. 不同模型尺寸的剪枝表现:表 1 给出了不同剪枝策略在不同模型大小上的性能表现。幅值剪枝仅在稀疏 10% 时保持较为良好的精度,而 SparseGPT 可以在稀疏 50~60% 的情况下保持精度不变。在 OPT-175B 上,SparseGPT 稀疏 50% 参数量的情况下,性能反而更好,困惑度从 8.34 降低至 8.21(越低越好)。同时 4:8 或 2:4 的半结构化剪枝扩展也有着良好的性能表现,这些方法能够在硬件上获得实际的推理加速和内存占用减少。
2. Zero-shot 实验:在表 2 中,作者还补充了几个 Zero-shot 任务中 OPT-175B 的各种稀疏变体的结果。从中可以看出稀疏 50% 的 SparseGPT 几乎与原始模型有着相同的零样本识别能力。
参考文献
[1] Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Seffi Naor, and Daniel Soudry. Accelerated sparse neural training: A provable and efficient method to find N:M transposable masks. In Conference on Neural Information Processing Systems (NeurIPS), 2021.
[2] Elias Frantar, Sidak Pal Singh, and Dan Alistarh. Optimal Brain Compression: A framework for accurate post-training quantization and pruning. arXiv preprint arXiv:2208.11580, 2022. Accepted to NeurIPS 2022, to appear.
[3] Thomas Blumensath and Mike E Davies. Iterative thresholding for sparse approximations. Journal of Fourier Analysis and Applications, 14(5-6):629–654, 2008.
[4] Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network pruning. InIEEE International Conference on Neural Networks, 1993.
更多阅读
#投 稿 通 道#
让你的文字被更多人看到
如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。
总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。
PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析、科研心得或竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。
📝 稿件基本要求:
• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注
• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题
• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算
📬 投稿通道:
• 投稿邮箱:hr@paperweekly.site
• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者
• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿
△长按添加PaperWeekly小编
🔍
现在,在「知乎」也能找到我们了
进入知乎首页搜索「PaperWeekly」
点击「关注」订阅我们的专栏吧