结合符号性记忆,清华等提出ChatDB,提升大模型的复杂推理能力
©作者 | 机器之心编辑部来源 | 机器之心
论文链接:
项目主页:
项目代码:
首先,提出了 ChatDB—— 一个用数据库作为 LLMs 的符号性记忆模块来增强 LLMs 的框架。这使得历史数据可以精确的以结构化的方式进行存储,并且支持使用 SQL 语句进行抽象的、可拓展的、精确的数据操作。
其次,提出了 Chain-of-Memory(CoM,记忆链)方法,通过将用户输入转化为多步中间的记忆操作,实现了对记忆模块中历史信息的复杂操作。这提高了 ChatDB 的性能,使其能够处理复杂的、涉及多个表的数据库交互,并提高了准确性和稳定性。
最后,将符号性记忆模块与 LLMs 结合,可以避免错误的累积,方便地存储中间结果,从而提高了多步推理(multi-hop reasoning)能力,使 ChatDB 在合成数据集上显著优于 ChatGPT。
方法
实验和结果
更多阅读
#投 稿 通 道#
让你的文字被更多人看到
如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。
总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。
PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析、科研心得或竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。
📝 稿件基本要求:
• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注
• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题
• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算
📬 投稿通道:
• 投稿邮箱:hr@paperweekly.site
• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者
• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿
△长按添加PaperWeekly小编
🔍
现在,在「知乎」也能找到我们了
进入知乎首页搜索「PaperWeekly」
点击「关注」订阅我们的专栏吧