[1] Hendrycks, D. and Gimpel, K. A baseline for detecting misclassified and out-of-distribution examples in neural networks. In ICLR, 2017.[2] Liu, W., Wang, X., Owens, J. D., and Li, Y. Energy-based out-of-distribution detection. In NeurIPS, 2020.[3] Hendrycks, D., Mazeika, M., and Dietterich, T. Deep anomaly detection with outlier exposure. In ICLR, 2019.[4] Yang, J., Zhou, K., Li, Y., and Liu, Z. Generalized out-ofdistribution detection: A survey. In arXiv, 2021.[5] Yang, J., Wang, P., Zou, D., Zhou, Z., Ding, K., PENG, W., Wang, H., Chen, G., Li, B., Sun, Y., et al. Openood: Benchmarking generalized out-of-distribution detection. In NeurIPS Datasets and Benchmarks Track, 2022.[6] Vaze, S., Han, K., Vedaldi, A., and Zisserman, A. Open-set recognition: A good closed-set classifier is all you need. In ICLR, 2022.[7] Arpit, D., Jastrzebski, S., Ballas, N., Krueger, D., Bengio, E., Kanwal, M. S., Maharaj, T., Fischer, A., Courville, A. C., Bengio, Y., and Lacoste-Julien, S. A closer look at memorization in deep networks. In ICML, 2017.[8] Sorg, J., Lewis, R. L., and Singh, S. Reward design via online gradient ascent. In NeurIPS, 2010.[9] Ishida, T., Yamane, I., Sakai, T., Niu, G., and Sugiyama, M. Do we need zero training loss after achieving zero training error? In ICML, 2020.[10] Ramanujan, V., Wortsman, M., Kembhavi, A., Farhadi, A., and Rastegari, M. What’s hidden in a randomly weighted neural network? In CVPR, 2020.[11] Ming, Y., Fan, Y., and Li, Y. Poem: Out-of-distribution detection with posterior sampling. In ICML, 2022.