查看原文
其他

Science:纳米金刚石的超弹性

知社 知社学术圈 2019-03-29

海归学者发起的公益学术平台

分享信息,整合资源

交流学术,偶尔风月

导 读

钻石,在工业中也称为金刚石,是自然界中最硬的物料,其硬度比钢都要高好几倍。但在最新一期的美国《科学》杂志中,香港城市大学领导的国际研究团队发表的研究发现,钻石在纳米尺度下可具有超级弹性,不但能大幅度屈曲变形,还可以像橡皮一样迅速回复原状,打破了人类一直以来对钻石的认知。

 

众所周知,钻石,是世界上最坚硬的物质。除了用作珍贵的珠宝装饰外,它可以作为最坚硬的物质和最好的导热体,在很多任务业领域发挥了强大的作用,例如做深井钻探,或是高精度切割、加工岩石和玻璃等坚硬物质的工具。但是正正因为钻石在宏观尺度下通常不表现出丝毫的变形行为,往往在还没有达到可见形变之前就已脆性断裂,使得钻石在作为光电子器件以及生物医药传输载体等需要承受机械变形的应用中有所限制。


不过,最新一期的世界顶级学术期刊《科学》杂志上以“Ultralarge elastic deformation of nanoscale diamond”为标题刊登了这项金刚石在纳米尺度下力学行为的重大发现。该研究项目由香港城市大学机械与生物医学工程系副教授、香港城市大学深圳研究院先进结构材料研究中心(CASM)研究员陆洋课题组领衔展开。这支由中美科学家领导的国际科研团队首次报道,在纳米尺度下,即金刚石的大小降至约100纳米时,就可承受前所未有的巨大形变且能恢复原状,而其中单晶纳米金刚石的弹性拉伸形变最大可以达到约百分之九,接近金刚石在理论上所能达到的弹性变形极限。


https://v.qq.com/txp/iframe/player.html?vid=j1338ouxnzg&width=500&height=375&auto=0


此前,陆博士团队成功在单晶硅纳米在线实现了超弹性的突破,并将相关研究结果以“Approaching the ideal elastic strain limit in silicon nanowires”为题目发表于2016年美国《科学》子刊《科学进展》杂志,在领域内造成极大反响。如今,他们把目标直指向自然界最坚硬的材料金刚石,以探究其纳米力学行为。


为了这次研究,陆博士研究团队运用香港城市大学材料科学与工程系教授、超金刚石与先进薄膜研究中心副主任张文军教授课题组特别制备的研究用纳米金刚石锥样品来进行测试。


在测量金刚石的力学性能方面,最初,他们采用了传统的纳米压痕方法,直接把纳米压痕仪(nanoindenter)“尖对尖”刺向纳米金刚石锥样品,结果不仅无法得到测试数据,甚至损坏了昂贵的金刚石压痕仪的压头。


不过,他们没有因此放弃。在经过大量探索性实验之后,他和研究团队作出了调整,最后在城市大学先进的电子显微镜设备和先进结构材料研究中心的纳米压痕仪平台基础上,专门针对钻石这一特殊对象,发展了一套独特而崭新的纳米力学测试方法:在电镜实时观察下,对纳米金刚石锥样品进行压缩-弯曲测试,即利用cube-corner纳米压痕仪的压头尖端的某一面,压向金刚石纳米锥导致其弯曲变形。实验结果发现,单晶金刚石纳米锥可以实现前所未有的大变形,且可在极大范围内瞬间恢复原状。


金刚石纳米锥的超弹性变形

 

为了进一步定量分析其弹性形变量,陆博士联合由美国麻省理工学院苏布拉·苏雷什教授(现南洋理工大学校长)和道明博士领导的纳米力学实验室专家团队来对实验结果进行了精确的有限元分析,结果确认,单晶金刚石纳米锥在拉伸侧的弹性应变达到了约9%的高度,而且对应强度也接近其理论极限。此前,如此高的形变量对于宏观的金刚石来说,根本无法想象。


研究团队同时对具备同样形貌尺寸的多晶金刚石纳米锥进行了对比测试,发现其最大弹性应变值为约3.5%,只有对应的单晶样品弹性形变均值的一半左右。即便如此,多晶金刚石纳米锥仍然比宏观金刚石样品通常所能达到的约0.3%的弹性应变高了整整一个数量级。

 

https://v.qq.com/txp/iframe/player.html?vid=w1338j5fxbu&width=500&height=375&auto=0


为探究其机理,陆博士团队进一步使用高分辨透射电子显微镜对断裂前后的样品进行了原子尺度的微结构分析,最终发现:金刚石纳米锥之所以能够达到如此大的弹性应变,除了是样品在纳米尺寸下表现出了愈小愈强的“尺寸效应”(size effect)之外,纳米金刚石锥本身近乎完美的内部晶体结构以及光滑的外表面也是重要因素。


陆博士形容,这次研究发现原来金刚石在纳米尺度下是有弹性, “这将彻底改变了我们对钻石的一贯认知。”

 

 

纳米尺度下金刚石超弹性行为的发现,将进一步拓展纳米金刚石在生物学领域的应用,包括药物传输、生物探测和生物影响等;也能够光在电器件领域、量子信息技术领域发挥作用;金刚石纳米结构的超弹性也为其在柔性电子器件的应用提供了可能性。


该项目主要由香港研究资助局以及国家自然科学基金的资助,除城大外,研究合作机构包括麻省理工学院、韩国蔚山科技大学以及新加坡南洋理工大学。香港城市大学机械与生物医学工程系Amit Banerjee博士、张洪题博士和麻省理工学院材料科学与工程系Daniel Bernoulli博士为该论文共同第一作者,香港城市大学陆洋副教授,张文军教授、麻省理工学院道明博士和新加坡南洋理工大学校长苏布拉·苏雷什教授为共同通讯作者。


是次研究团队成员还包括︰香港城市大学副校长、机械工程系讲座教授吕坚教授、机械与生物医学工程系的刘嘉斌博士(现浙江大学材料系副教授),材料科学与工程系的袁牧锋博士以及韩国蔚山科学技术院Institute for Basic Science的董际臣和丁峰教授。


香港城大机械与生物医学工程系陆洋副教授(左)与该系的张洪题博士(中)、AmitBanerjee博士(右)经过无数通宵达旦的实验,当终于有突破性的发现时,心情很激动。

扩展阅读

 

“早安云雀,晚安夜枭”——谈谈生物钟的基因类型

Science: 弯还是直, 这是一个问题, 从中国学生发现挠曲电光伏效应说开

贸易战和中兴封锁之后, 美国社会围剿中国科技公司第三波

本文系网易新闻·网易号“各有态度”特色内容

媒体转载联系授权请看下方

    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存