npj: 二维半导体中缺陷束缚带边态—激发和载流子传输
海归学者发起的公益学术平台
分享信息,整合资源
交流学术,偶尔风月
近年来,研发石墨烯之外的二维(2D)半导体,如过渡金属硫族化合物、氮化硼、黑磷等,将电子器件开发从传统半导体材料发展到具有原子层厚度的新兴半导体材料,使得延续摩尔定律成为可能。但是,开发基于2D半导体的电子器件较为复杂:与三维半导体中容易实现的杂质电离相比,当介电常数ε从3D变到2D时体系会显著降低;理论报道2D半导体中的杂质电离能比3D半导体的电离能更深。因此,二维半导体杂质电离困难使得在器件中产生适当浓度载流子变得具有挑战性。
来自吉林大学集成光电子国家重点实验室的李贤斌教授领导的团队(www.ioe-jlu.cn/csp),通过第一性原理计算研究,确定了单层MoS2中会出现缺陷束缚带边态(defect-bound band edge, DBBE)。他们发现形成DBBE态的原因是带电缺陷和激发到带边的载流子之间存在强束缚作用。该强束缚作用是维度降低的结果,也是2D材料中电荷屏蔽减弱的结果。实验上重掺杂的MoS2电导率可能是DBBE态传输的特殊情况。这时,载流子只被激发到DBBE态,而不是传统3D半导体的自由带边态。这些DBBE态的电离能较小,空间离域较大。在合适的缺陷密度条件下,载流子可以通过这些DBBE态传输。这一研究揭示了二维半导体中载流子的缺陷电离和传输的全新物理图像,对设计新兴纳米电子器件具有重要影响。
该文近期发表于npj Computational Materials 5: 8 (2019),英文标题与摘要如下,点击左下角“阅读原文”可以自由获取论文PDF。
Excitation to defect-bound band edge states in two-dimensional semiconductors and its effect on carrier transport
Dan Wang, Dong Han, Damien West, Nian-Ke Chen, Sheng-Yi Xie, Wei Quan Tian, Vincent Meunier, Shengbai Zhang & Xian-Bin Li
Abstract The ionization of dopants is a crucial process for electronics, yet it can be unexpectedly difficult in two-dimensional materials due to reduced screening and dimensionality. Using first-principles calculations, here we propose a dopant ionization process for two-dimensional semiconductors where charge carriers are only excited to a set of defect-bound band edge states, rather than to the true band edge states, as is the case in three-dimensions. These defect-bound states have small enough ionization energies but large enough spatial delocalization. With a modest defect density, carriers can transport through band by such states.
扩展阅读
本文系网易新闻·网易号“各有态度”特色内容
媒体转载联系授权请看下方