查看原文
其他

计算机眼中的植物是怎样的?| Plant Methods

The following article is from BMC期刊 Author BMC 期刊

海归学者发起的公益学术平台

分享信息,整合资源

交流学术,偶尔风月

在植物生物学领域,一些新方法的建立使得数据类型和采集方法呈爆炸式增长。而许多数据本质上是基于图像或视频产生的。计算机视觉、图像分析和图像处理技术正越来越多地参与到植物数据当中。


编辑:Hannah Dee 博士


在“BVMA技术会议:计算机视角下的植物”会议的启发下,Plant Methods 以专题的形式出版了有关计算机视觉与植物科学之间交叉性的原创工作;这个专题特别关注用于分析植物图像、视频和扫描的计算机算法、方法和系统。



这个专题的文章涵盖了在许多不同尺度(小至微观图像,大至野外尺度测量)下,通过图像数据进行植物的检测、分割和建模等工作。其中一些文章描述的完整软件现在已经能够被生物学家们使用。还有一些文章探讨了算法的开发,指明了未来软件功能的方向。


这个专题的文章尚未得到赞助,文章都由编辑负责,经过了标准的同行评议过程。编辑声明本专题不存在任何利益冲突。以下是精选该专题文章:


利用无人机(UAV)成像和光谱混合分析对油菜籽产量进行远程估算

Remote estimation of rapeseed yield with unmanned aerial vehicle (UAV) imaging and spectral mixture analysis

Yan Gong et al.

DOI: 10.1186/s13007-018-0338-z 


扫描二维码 阅读论文

Remote estimation of rapeseed yield with unmanned aerial vehicle (UAV) imaging and spectral mixture analysis



深度表型分析:对时间表型/基因型分类的深度学习

Deep phenotyping: deep learning for temporal phenotype/genotype classification

Sarah Taghavi Namin et al.

DOI: 10.1186/s13007-018-0333-4


扫描二维码 阅读论文

Deep phenotyping: deep learning for temporal phenotype/genotype classification



基于图像的拟南芥生长动态和适应性成分表型分析方法

Image-based methods for phenotyping growth dynamics and fitness components in Arabidopsis thaliana

François Vasseur et al.

DOI:10.1186/s13007-018-0331-6


扫描二维码 阅读论文

Image-based methods for phenotyping growth dynamics and fitness components in Arabidopsis thaliana



Plant Methods 是一本开放获取的同行评审期刊, 收录的文章涵盖了植物科学研究中技术创新的方方面面,以促进对先进研究工具的开发和推广使用。


欢迎点击"阅读原文"查看更多此专题相关文章!


Plant Methods

扩展阅读

 

CRISPR助力植物的定向演化 | Genome Biology

如何选择合适植物,提升室内空气质量,减少能耗?

生物化学与分子生物学| BMC编辑精选特辑

Journal of Biological Engineering编辑精选合集

本文系网易新闻·网易号“各有态度”特色内容

媒体转载联系授权请看下方

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存