SOS—操弄对称的相似原理 (上)
The following article is from 量子材料QuantumMaterials Author 李翔
海归学者发起的公益学术平台
分享信息,整合资源
交流学术,偶尔风月
对 称
编者按
引子
非互易性与SOS原理
非互易性在物理学中的解释是:对于一个对象,如果沿一个方向的运动行为与其沿反方向的运动行为有所不同,这一过程称为非互易方向二色性,或简称为非互易效应 [7-9] [译者注:为了简化描述,后文将称这两种相反的运动行为是相互对立的,无论其互易与否。同时,由于这些运动行为通常由实验所观测,也可称之为不同的实验情况]。这里,所谓的对象,不仅可以是上述二极管效应中的电子,也可以是声子、自旋波、晶体中的光。
在准平衡过程中,如果相互关联的两种运动行为 (实验状态) 可以通过某一对称操作集合而联系起来,则当某一构成量在该对称操作集合下发生破缺时,这两种实验状态下所观测到的该构成量将是非互易的。
多铁与线性磁电材料
接下来,可以考虑一件非常有趣的事:如果在材料中通过某些非平凡的手段,使得相应的对称性发生破缺,那么根据SOS 原理,是否就能获得一些新奇的物理现象呢?
压电效应
Nye, J. F. Physical properties of crystals. Ch. 10 (Oxford university press, Oxford, 1957).
Halasyamani, P. S. & Poeppelmeier, K. P. Noncentrosymmetric oxides. Chem. Mater. 10, 2753-2769 (1998).
Hlinka, J. Eight types of symmetrically distinct vectorlike physical quantities. Phys. Rev. Lett. 113, 165502 (2014).
Saxena, A. & Lookman, T. Magnetic symmetry of low-dimensional multiferroics and ferroelastics. Phase Trans. 84, 421-437 (2011).
Dubrovik, V. M. & Tugushev, V. V. Toroid moments in electrodynamics and solid-state physics. Phys. Rep. 187, 145-202 (1990).
Schmid, H. On ferrotoroidics and electrotoroidic, magnetotoroidic and piezotoroidic effects. Ferroelectrics 252, 41-50 (2001).
Nicklow, R. M., Wakabayashi, N., Wilkinson, M. K. & Reed, R. E. Spin-wave dispersion relation for Er metal at 4.5 K. Phys. Rev. Lett. 27, 334-337 (1971).
Rikken, G. L. J. A., Strohm,C., and Wyder, P. Observation of magnetoelectric directional anisotropy. Phys. Rev. Lett. 89, 133005 (2002).
Szaller, D., Bordacs, S. & Kezsmarki, I. Symmetry conditions for nonreciprocal light propagation in magnetic crystals. Phys. Rev. B 87, 014421 (2013).
See, for example, Kim, C. J., Lee, D., Lee, H. S., Lee, G., Kim, G. S., Jo, M. H. Vertically aligned Si intrananowire p-n diodes by large-area epitaxial growth. Appl. Phys. Lett. 94, 173105 (2009).
Choi, T., Lee, S., Choi, Y. J., Kiryukhin, V. & Cheong, S.-W. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324, 63-66 (2009).
Ideue, T. et al. Bulk rectification effect in a polar semiconductor. Nat. Phys. 13, 578–583 (2017).
Cheong, S.-W. & Mostovoy, M. Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13-20 (2007).
Manipatruni, S. et al. Scalable energy-efficient magnetoelectric spin-orbit logic. Nature 565, 35-42 (2019).
Cheong, S.-W., Talbayev, D., Kiryukhin, V. & Saxena, A. Broken symmetries, non-reciprocity, and multiferroicity. npj Quantum. Mater. 3, 19 (2018).
Seki, S. et al. Magnetochiral nonreciprocity of volume spin wave propagation in chiral-lattice ferromagnets. Phys. Rev. B 93, 235131 (2016).
Cheon, S., Lee, H.-W., Cheong, S.-W. Nonreciprocal spin waves in a chiral antiferromagnet without the Dzyaloshinskii-Moriya interaction. Phys. Rev. B 98, 184405 (2018).
Stock, C. Spin-wave directional anisotropies in antiferromagnetic Ba3NbFe3Si2O14 without antisymmetric exchange. Phys. Rev. B, in print.
Spaldin, N. A., Fiebig, M. & Mostovoy, M. The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. J. Phys.: Condens. Matter 20, 434203 (2008).
Yu, S. K. et al. High-temperature terahertz optical diode effect without magnetic order in polar FeZnMo3O8. Phys. Rev. Lett. 120, 037601 (2018).
Krstić, V., Roth, S., Burghard, M., Kern, K. & Rikken, G. L. J. A. Magneto-chiral anisotropy in charge transport through single-walled carbon nanotubes. J. Chem. Phys. 117, 11315-11319 (2002).
Cheong, S.-W. Topological domains/domain walls and broken symmetries in multiferroics. National Science Review 6, 624-626 (2019).
Kimura, T. et al. Magnetic control of ferroelectric polarization. Nature 426, 55-58 (2003).
Park, S., Choi, Y. J., Zhang, C. L. & Cheong, S.-W. Ferroelectricity in an S=1/2 chain cuprate. Phys. Rev. Lett. 98, 057601 (2007).
Hearmon, A. J. et al. Electric field control of the magnetic chiralities in ferroaxial multiferroic RbFe(MoO4)2. Phys. Rev. Lett. 108, 237201 (2012).
Johnson, R. D., Chapon, L.C., Khalyavin, D. D., Manuel, P., Radaelli, P. G. & Martin, C. Giant improper ferroelectricity in the ferroaxial magnet CaMn7O12. Phys. Rev. Lett. 108, 067201 (2012).
Choi, Y. J., Yi, H. T., Lee, S., Huang, Q., Kiryukhin, V. & Cheong, S.-W. Ferroelectricity in an Ising chain magnet. Phys. Rev. Lett. 100, 047601 (2008).
Hur, N., Park, S., Sharma,P. A., Ahn, J. S., Guha S. & Cheong S.-W. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392-395 (2004).
Sergienko, I. A., Sen, C.& Dagotto, E. Ferroelectricity in the magnetic e-phase of orthorhombic perovskites. Phys. Rev. Lett. 97, 227204 (2006).
Murakawa, H., Onose, Y., Miyahara, S., Furukawa, N. & Tokura, Y. Ferroelectricity induced by spin-dependent metal-ligand hybridization in Ba2CoGe2O7. Phys. Rev. Lett. 105, 137202 (2010).
See, for example, Popov Yu. F., Kadomtseva, A. M., Belov, D. V. & Vorob'ev, G. P. Magnetic-field-induced toroidal moment in the magnetoelectric Cr2O3. JETP Lett. 69, 330-335 (1999).
Furukawa, T., Shimokawa, Y., Kobayashi, K. & Itou, T. Observation of current-induced bulk magnetization in elemental tellurium. Nat. Commun. 8, 954 (2017).
Vorobev, L. E. et al. Optical-activity in tellurium induced by a current. JETP Lett. 29, 441-445 (1979).
Lee M. H. et al. Hidden antipolar order parameterand entangled Néel-type charged domain walls in hybrid improper ferroelectrics. Phys. Rev. Lett. 119, 157601 (2017).
Juraschek, D. M., Fechner, M., Balatsky, A. V. & Spaldin, N. A. Dynamical multiferroicity. Phys. Rev. Mat. 1, 014401 (2017).
Khanh, N. D., et al. Magnetoelectric coupling in the honeycomb antiferromagnet Co4Nb2O9. Phys. Rev. B 93, 075117 (2016).
Disseler, S. M. et al. Multiferroicity in doped hexagonal LuFeO3. Phys. Rev. B 92, 054435 (2015).
Du, K. et al. Vortex ferroelectric domains, large-loop weak ferromagnetic domains, and their decoupling in hexagonal (Lu,Sc)FeO3. npj Quantum. Mater. 3, 33 (2018).
备注:
(1) 题头小诗有故弄玄虚之嫌,以示对称性在物理中的崇高地位。由此,所有与对称性相关的动作均具有不俗的意义和价值。
(2) 封面图片来自http://kidminds.org/wp-content/uploads/2016/08/Symmetry-in-Nature-PHOTO.png。
(3) 本文翻译得到作者授权并经Nature出版集团同意。
点击左下角“阅读原文”查看论文原文。
扩展阅读
本文系网易新闻·网易号“各有态度”特色内容
媒体转载联系授权请看下方