npj: 有物理头脑的贝叶斯网络—太阳能电池工艺的创新优化
海归学者发起的公益学术平台
分享信息,整合资源
交流学术,偶尔风月
工艺优化对于实现材料和器件性能的最大化至关重要。光伏器件由于具有复杂的多层结构,受到很多工艺参数的影响,因而对工艺优化更加敏感。传统的器件优化方法,如贝叶斯网络、格点搜索和粒子群算法等都是基于黑盒子的优化模式,即直接建立工艺参数和器件性能的关联。然而,该类方法却由于缺少物理支撑,一方面强烈依赖于参数范围的选择,很难得到全局最优的结果,另一方面也很难找出现有器件瓶颈的本质原因。
Embedding physics domain knowledge into a Bayesian network enables layer-by-layer process innovation for photovoltaics
Zekun Ren, Felipe Oviedo, Maung Thway, Siyu I. P. Tian, Yue Wang, Hansong Xue, Jose Dario Perea, Mariya Layurova, Thomas Heumueller, Erik Birgersson, Armin G. Aberle, Christoph J. Brabec, Rolf Stangl, Qianxiao Li, Shijing Sun, Fen Lin, Ian Marius Peters and Tonio Buonassisi
Process optimization of photovoltaic devices is a time-intensive, trial-and-error endeavor, which lacks full transparency of the underlying physics and relies on user-imposed constraints that may or may not lead to a global optimum. Herein, we demonstrate that embedding physics domain knowledge into a Bayesian network enables an optimization approach for gallium arsenide (GaAs) solar cells that identifies the root cause(s) of underperformance with layer-by-layer resolution and reveals alternative optimal process windows beyond traditional black-box optimization. Our Bayesian network approach links a key GaAs process variable (growth temperature) to material descriptors (bulk and interface properties, e.g., bulk lifetime, doping, and surface recombination) and device performance parameters (e.g., cell efficiency). For this purpose, we combine a Bayesian inference framework with a neural network surrogate device-physics model that is 100× faster than numerical solvers. With the trained surrogate model and only a small number of experimental samples, our approach reduces significantly the time-consuming intervention and characterization required by the experimentalist. As a demonstration of our method, in only five metal organic chemical vapor depositions, we identify a superior growth temperature profile for the window, bulk, and back surface field layer of a GaAs solar cell, without any secondary measurements, and demonstrate a 6.5% relative AM1.5G efficiency improvement above traditional grid search methods.
扩展阅读
本文系网易新闻·网易号“各有态度”特色内容
媒体转载联系授权请看下方