npj: 嵌入式相变存储材料—设计与优化
The following article is from Nature Portfolio Author Nature Portfolio
海归学者发起的公益学术平台
分享信息,整合资源
交流学术,偶尔风月
相变存储硫属化物相变材料利用硫族相变材料非晶相和晶体相之间快速且可逆的相变能力以及两相之间巨大的电阻差异实现快速且稳定的数据存储。目前,英特尔、美光等半导体公司基于锗锑碲合金Ge2Sb2Te5研发的相变存储器3DXpoint已经作为独立式存储类内存进入全球存储器市场。此外,相变存储亦在嵌入式存储应用,如汽车工业、微控制单元、物联网等方面有着广阔的市场前景。面向嵌入式应用,器件稳定性需要经过260℃数分钟的高温退火考验,而传统锗锑碲合金的结晶化温度仅为150℃。近期,意法半导体公司通过调控锗锑碲合金成分可大幅提升结晶化温度,并证实富锗合金相变存储器件可用于汽车微控制芯片的大规模集成,但同时该公司亦指出过量的锗元素极易引发相分离,进而导致器件失效。因此,如何有效提升锗锑碲合金非晶稳定性,但同时避免相分离是该方向亟待解决的问题。
锗锑碲非晶稳定性与相分离趋势研究
Ab initio molecular dynamics and materials design for embedded phase-change memory
Liang Sun, Yu-Xing Zhou, Xu-Dong Wang, Yu-Han Chen, Volker L. Deringer, Riccardo Mazzarello, and Wei Zhang
The Ge2Sb2Te5 alloy has served as the core material in phase-change memories with high switching speed and persistent storage capability at room temperature. However widely used, this composition is not suitable for embedded memories—for example, for automotive applications, which require very high working temperatures above 300 °C. Ge–Sb–Te alloys with higher Ge content, most prominently Ge2Sb1Te2 (‘212’), have been studied as suitable alternatives, but their atomic structures and structure–property relationships have remained widely unexplored. Here, we report comprehensive first-principles simulations that give insight into those emerging materials, located on the compositional tie-line between Ge2Sb1Te2 and elemental Ge, allowing for a direct comparison with the established Ge2Sb2Te5 material. Electronic-structure computations and smooth overlap of atomic positions (SOAP) similarity analyses explain the role of excess Ge content in the amorphous phases. Together with energetic analyses, a compositional threshold is identified for the viability of a homogeneous amorphous phase (‘zero bit’), which is required for memory applications. Based on the acquired knowledge at the atomic scale, we provide a materials design strategy for high-performance embedded phase-change memories with balanced speed and stability, as well as potentially good cycling capability.
扩展阅读
本文系网易新闻·网易号“各有态度”特色内容
媒体转载联系授权请看下方