海归学者发起的公益学术平台
镍基高温合金,如René 88DT,由于优异的热机械和化学性能,被广泛应用于高温环境中,尤其是航空航天推进系统工业。尽管这类材料性能优异,但其微观结构中存在异质性,材料的疲劳寿命受到影响。材料的微观结构变化是导致其在工作条件下疲劳失效的主要因素,这主要包括晶体和晶粒形态分布、晶粒内成分的变化,以及退火孪晶等。在过去的20年研究中,人们在理解和预测微观结构与局部机械场之间的联系,以及疲劳载荷下的关键失效指标等方面,已经取得了重大进展,这主要得益于先进的实验表征技术和丰富的计算模型。然而,我们亟需开发一个可靠的、机制驱动的预测模型,将多晶微观结构中的演变状态变量与裂纹的形核有效地联系起来。
来自美国约翰霍普金斯大学土木与系统工程系的Maxwell Pinz等人,针对在疲劳荷载下镍基高温合金René 88DT,开发了一种基于贝叶斯推理的概率裂纹形核模型。他们开发了一种数据驱动的机器学习方法,用于识别驱动裂纹形核的潜在机制。作者使用扫描电子显微镜和电子背散射衍射图像,对裂纹成核位置附近的疲劳荷载微观结构进行了表征,分析了晶粒形态和晶体与裂纹形核位置之间的关联。通过开发用于疲劳模拟的并行多尺度模型,有效地将实验的多晶微结构代表性体积元嵌入均匀化法的材料中。利用一种贝叶斯分类方法,实现裂纹形核的信息状态变量预测值的最优选择,建立了一个简单的标量裂纹形核指示器。重要的是,该工作开发的整体建模框架,不限于本研究考虑的高温合金,可用于其他多晶合金。该文近期发表于npj Computational Materials 8:39 (2022),英文标题与摘要如下,点击左下角“阅读原文”可以自由获取论文PDF。
Data-driven Bayesian model-based prediction of fatigue crack nucleation in Ni-based superalloys Maxwell Pinz, George Weber, Jean Charles Stinville, Tresa Pollock & Somnath Ghosh
This paper develops a Bayesian inference-based probabilistic crack nucleation model for the Ni-based superalloy René 88DT under fatigue loading. A data-driven, machine learning approach is developed, identifying underlying mechanisms driving crack nucleation. An experimental set of fatigue-loaded microstructures is characterized near crack nucleation sites using scanning electron microscopy and electron backscatter diffraction images for correlating the grain morphology and crystallography to the location of crack nucleation sites. A concurrent multiscale model, embedding experimental polycrystalline microstructural representative volume elements (RVEs) in a homogenized material, is developed for fatigue simulations. The RVE domain is modeled by a crystal plasticity finite element model. An anisotropic continuum plasticity model, obtained by homogenization of the crystal plasticity model, is used for the exterior domain. A Bayesian classification method is introduced to optimally select informative state variable predictors of crack nucleation. From this principal set of state variables, a simple scalar crack nucleation indicator is formulated.