查看原文
其他

SLAM相关资源大列表

2017-08-21 慧天地


点击图片上方蓝色字体“慧天地”即可订阅

(更多精彩请留意文末推荐) 

摘要

Simultaneous Localization and Mapping, also known as SLAM, is the computational problem of constructing or updating a map of an unknown environment while simultaneously keeping track of an agent's location within it.

 

News

For researchers, please read the recent review paper, Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age, from Cesar Cadena, Luca Carlone et al.

 

Table of Contents

Books

Courses, Lectures and Workshops

Papers

Researchers

Datasets

Code

Miscellaneous

Contributing

 

Books

State Estimation for Robotic -- A Matrix Lie Group Approach by Timothy D. Barfoot, 2016

Simultaneous Localization and Mapping for Mobile Robots: Introduction and Methods by Juan-Antonio Fernández-Madrigal and José Luis Blanco Claraco, 2012

Simultaneous Localization and Mapping: Exactly Sparse Information Filters by Zhan Wang, Shoudong Huang and Gamini Dissanayake, 2011

Probabilistic Robotics by Dieter Fox, Sebastian Thrun, and Wolfram Burgard, 2005

An Invitation to 3-D Vision -- from Images to Geometric Models by Yi Ma, Stefano Soatto, Jana Kosecka and Shankar S. Sastry, 2005

Multiple View Geometry in Computer Vision by Richard Hartley and Andrew Zisserman, 2004

Numerical Optimization by Jorge Nocedal and Stephen J. Wright, 1999

 

Courses, Lectures and Workshops

SLAM Tutorial@ICRA 2016

Geometry and Beyond - Representations, Physics, and Scene Understanding for Robotics at Robotics: Science and Systems (2016)

Robotics - UPenn on Coursera by Vijay Kumar (2016)

Robot Mapping - UniFreiburg by Gian Diego Tipaldi and Wolfram Burgard (2015-2016)

Robot Mapping - UniBonn by Cyrill Stachniss (2016)

Introduction to Mobile Robotics - UniFreiburg by Wolfram Burgard, Michael Ruhnke and Bastian Steder (2015-2016)

Computer Vision II: Multiple View Geometry - TUM by Daniel Cremers ( Spring 2016)

Advanced Robotics - UCBerkeley by Pieter Abbeel (Fall 2015)

Mapping, Localization, and Self-Driving Vehicles at CMU RI seminar by John Leonard (2015)

The Problem of Mobile Sensors: Setting future goals and indicators of progress for SLAM sponsored by Australian Centre for Robotics and Vision (2015)

Robotics - UPenn by Philip Dames and Kostas Daniilidis (2014)

Autonomous Navigation for Flying Robots on EdX by Jurgen Sturm and Daniel Cremers (2014)

Robust and Efficient Real-time Mapping for Autonomous Robots at CMU RI seminar by Michael Kaess (2014)

KinectFusion - Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera by David Kim (2012)

SLAM Summer School organized by Australian Centre for Field Robotics (2009)

SLAM Summer School organized by University of Oxford and Imperial College London (2006)

SLAM Summer School organized by KTH Royal Institute of Technology (2002)

 

Papers

Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age (2016)

Direct Sparse Odometry (2016)

Modelling Uncertainty in Deep Learning for Camera Relocalization (2016)

Large-Scale Cooperative 3D Visual-Inertial Mapping in a Manhattan World (2016)

Towards Lifelong Feature-Based Mapping in Semi-Static Environments (2016)

Tree-Connectivity: Evaluating the Graphical Structure of SLAM (2016)

Visual-Inertial Direct SLAM (2016)

A Unified Resource-Constrained Framework for Graph SLAM (2016)

Multi-Level Mapping: Real-time Dense Monocular SLAM (2016)

Lagrangian duality in 3D SLAM: Verification techniques and optimal solutions (2015)

A Solution to the Simultaneous Localization and Map Building (SLAM) Problem

Simulataneous Localization and Mapping with the Extended Kalman Filter

 

Researchers

United States

John Leonard

Sebastian Thrun

Frank Dellaert

Dieter Fox

Stergios I. Roumeliotis

Vijay Kumar

Ryan Eustice

Michael Kaess

Guoquan (Paul) Huang

Gabe Sibley

Luca Carlone

Andrea Censi

Europe

Paul Newman

Roland Siegwart

Juan Nieto

Wolfram Burgard

Jose Neira

Davide Scaramuzza

Australia

Cesar Cadena

Ian Reid

Tim Bailey

Gamini Dissanayake

Shoudong Huang

 

Datasets

Intel Research Lab (Seattle)

 

Code

ORB-SLAM

LSD-SLAM

ORB-SLAM2

DVO: Dense Visual Odometry

SVO: Semi-Direct Monocular Visual Odometry

G2O: General Graph Optimization

RGBD-SLAM

链接:

https://github.com/kanster/awesome-slam

原文链接:

https://m.weibo.cn/1402400261/4140930397690270

来源:爱可可-爱生活(版权归原作者及刊载媒体所有)

推荐

点击下文直接阅读

视觉SLAM资源集锦

深入一线|SLAM技术在城市地下综合管廊信息化建设中的应用



编辑:郭晓非

审核:高敬凯

指导:万剑华教授(微信号wjh18266613129)

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存