查看原文
其他

北京邮电大学教授邓中亮:室内定位关键技术综述

邓中亮 等 慧天地 2020-09-15



点击左上方蓝色字体“慧天地”即可订阅

(点击图片可放大观看,更多精彩请留意文末推荐)

摘 要:近年来,位置服务需求不断增长,催生了定位技术的不断发展。针对室内定位,首先介绍了目前广泛应用的几种室内定位系统及其定位原理,并分析了它们的优缺点。然后,针对室内定位中常见的几类关键问题,做出了介绍分析。最后,通过分析现有定位技术,给出了室内定位技术的发展趋势,表明融合定位及导航通信一体化定位是提高定位精度及鲁棒性的有效方法,毫米波及MIMO技术的应用可有效提高测距精度并提高抗多径能力。


关键词:室内定位;定位系统;定位技术;TC-OFDM


0 引言


近年来,位置服务(Location Based Services,LBS)产业发展迅猛,高精度位置信息是提供高质量位置服务的基础。传统卫星定位系统,如全球定位系统(Global Positioning System,GPS)、北斗定位系统,在室外空旷环境拥有较高的定位精度,但是,受制于信号强度,卫星定位信号很容易受到遮挡或干扰,导致卫星定位系统在城市峡谷及室内环境定位不准甚至无法定位[1]。为了解决室内环境下的定位问题,近年来出现了很多室内定位技术,如基站定位、无线局域网(Wi-Fi)定位等[2-3]。对室内定位相关理论方法的研究已经成为了定位导航领域的热点问题之一。


为了解决室外定位导航的“最后一公里”问题,众多学者在室内定位技术方面展开了大量的研究工作,如基站定位、Wi-Fi定位、无线射频标签(Radio Frequency Identification,RFID)定位[4]、蓝牙(Bluetooth)定位、超宽带无线电(Ultra-Wideband,UWB)定位[5]、基于移动通信网络的辅助GPS[6]、ZigBee定位[7]、地磁定位[8]、地面数字通信及广播信号定位[9]、伪卫星定位[10]、计算机视觉定位[11]、可见光定位等[12]。这些定位技术有些是以定位导航为主要用途,例如伪卫星定位等;有些技术则是以通信为主要用途,但是仍然可以提供定位服务,例如基站定位、Wi-Fi定位等。


目前室内定位技术发展可以分成2个方向:局域室内定位技术和广域室内定位技术。局域室内定位可在局域网中实现局部区域的覆盖,代表技术有Wi-Fi定位、蓝牙定位、RFID定位、ZigBee定位等;广域室内定位技术可在广域网上实现广域覆盖,代表技术有我国的TC-OFDM[13]、澳大利亚的Locata[14]和美国高通公司QPoint定位系统等。局域室内定位技术具有成本较低、部署时间周期短的特点,但是可定位场所有限且各个局域室内定位区域采用的技术目前仍然没有标准,即无法使用统一的用户终端;广域室内定位技术可以通过同一标准来获得大范围的使用,但是目前仍然没有统一的标准,并且广域室内定位技术一般需要改造基站和手机芯片等,成本巨大、时间周期长。


本文首先介绍了目前的主流定位技术,然后讨论了室内定位中存在的几项关键技术,并对当前室内定位技术进行了较为全面的分析介绍。


1 主流室内定位技术


目前,主流室内定位技术可分为广域室内定位和局域室内定位。不同定位手段或定位系统作用范围和定位精度不同,如图1所示。


图1 主流室内定位技术


1.1 基站定位技术

基站定位是一种由手机运营商提供的定位服务,不需要借助全球导航卫星系统(Global Navigation Satellite System,GNSS),也不需要专业的定位装置,可以通过测量终端与多个基站的距离对用户进行定位。基站定位具有低功耗、低成本的优势,如图2所示。


图2 基站定位系统原理


基站定位技术的定位精度随着通信系统的不断发展得到了很大的提高[15]。其中,Varshavsky等提出了一种基于手机基站的室内定位方法,该方法通过收集多层建筑物信号的RSSI,来区分多层建筑物的楼层数,其定位精度可以达到2~4m[16]。Ingensand和Bitzi论述了基站定位在采用Cell-ID、RSSI指纹、RSSI测距、AOA、TOA、TDOA 等方法的优劣[17]


1.2 伪卫星定位技术

伪卫星定位技术通过卫星信号生成器和发射器构成的伪卫星进行定位。因此伪卫星装置相当于位置可以灵活放置的模拟导航卫星,通过发射类似于卫星导航的信号提高局部地区的定位和导航功能。在卫星数过少,或者信号遮挡严重等不利于观测的场合可以通过应用伪卫星定位技术来改善卫星星座结构,从而改善卫星定位精度;甚至在卫星导航系统不能正常使用的特殊条件下,伪卫星也可以完全代替导航卫星,进行单独定位导航,实现伪卫星的单独组网布局定位[18]


早在GPS初期研究阶段,众多学者就已经开始了对伪卫星问题的研究。美国为了验证GPS系统理论的可行性和进行信号体制实验,搭建了伪卫星Yuma卫星导航测试场[19]。Klein和Parkinson创新提出了伪卫星可以作为一种辅助工具,在某些对定位精度有特殊要求的场合中增强GPS系统的可用性和几何特性[20]。Parkinson和Fitzgibbon提出并论证了一种距离修正伪卫星设置地点的最优配置方法[21]。2002年欧盟在德国建成了伽利略试验测试环境GATE 并通过6 个地面伪卫星发射Galileo信号,开展了接收机在真实地理信号环境中的定位测试。欧盟针对无缝位置服务市场在Galileo项目中提出了伽利略本地技术计划(GILT),专门研究室内外Galileo 伪卫星在定位方面的应用。由LOCATA公司和新南威尔士大学合作研制的LOCATA伪卫星满足了自动控制、采矿业、港口精密定位、室内定位等领域的自组网用户的定位需求,水平定位精度可以达到cm 级[22]。此外芬兰的SPACE SYSTEMS公司为了验证伪卫星在室内环境的定位性能,研究生产了一套基于GPS L1信号的伪卫星信号发射系统。德国的Anchalee Puengnim等提出了一种基于伪卫星虚拟同步的高精度定位方案,通过实时差分的方式有效地将定位精度提高到cm级[23]


在国内方面,随着我国北斗定位产业的迅猛发展,基于伪卫星的相关技术也受到学者的广泛关注。尽管发展时间较短,但却得到了很大的进展,如中电54所的伪卫星技术已在战区导航增强、无人机着陆等领域开展了应用,同时部分北斗伪卫星定位产品的应用已成功增强了九寨沟风景区的山区道路导航。除此之外西北工业大学、上海交通大学、武汉大学和哈尔滨工程大学等著名高校对伪卫星定位基础理论展开了研究,其中罗益、魏海涛等对基于伪卫星的GNSS星地时间不同步问题进行了进一步研究[24],刘超、高井祥等对空间伪卫星优化布局进行了进一步分析研究[25]


1.3 指纹定位技术

信号的多径传播对环境有依赖性,呈现了很强的特殊性,对于每个特定的位置而言,该位置上信道的多径结构是唯一的,可以认为是该位置的指纹。指纹定位技术源于数据库技术(Database Correction Method,DCM)[26],它的操作核心实际上是通过获取到的信息值与先前建立的信息库进行匹配确定待测点的定位结果。它的工作过程主要分为2个阶段:离线采集阶段和定位阶段。离线采集阶段的主要工作是通过采集定位区域内定位信号的RSSI建立指纹数据库;定位阶段的主要工作是将移动端在待测点采集到的定位信号特征与指纹库中的数据进行匹配,得出待测点所在的位置信息,其中,位置信息可以是二维坐标,也可以是地理信息,如图3所示。


图3 指纹定位示意图


指纹定位具有不需要参考测量点、定位精度相对较高等优势,但缺点是前期离线建立指纹库阶段的工作量很大,同时很难自适应于环境变化较大的场景。


位置指纹的定位技术因定位信号获取方式简单,不需要复杂的硬件设备支持,易于在商业中应用等优点引起了从学术界到工程界的广泛关注与研究。国外对位置指纹定位研究较多的机构和高校有IBM、微软、Intel、南洋理工大学等,如美国微软研究院研发的Radar系统、马里兰大学研究的Horus系统等。其中,Radar系统定位简单,但精度不高;Horus系统通过采用概率分布函数的方法,提高了定位精度但复杂度较高[27]。国内在指纹定位技术的研究主要集中在高校和研究所,有代表性的有上海交通大学、华东师范大学、北京邮电大学、香港科技大学、中科院研究所等高校和科研机构;中国台湾铭传大学研究开发了一种利用位置指纹定位法的Wi-Fi室内自动导航系统,通过实验得出95%以上点的定位误差在5m 以内;香港科技大学杨强教授对位置指纹法进行深入的研究,通过更加精确的定位算法得到定位精度在1m内[28]


1.4 UWB定位技术

超宽带信号是拥有超过中心频率20%相对带宽或者绝对带宽超过500MHz的信号[29]。UWB定位技术就是通过发射、接收大带宽脉冲实现位置估计。UWB系统与传统的窄带系统相比,大的带宽保证了其具有穿透力强、发射功率低、传输速率高、抗多径效果好等优点。正是这些优点,使它在室内定位领域中得到了较为精确的定位结果。


20世纪60年代后期,UWB技术因其较好的穿透性和类噪声性而被应用于军事领域中的监听技术[30]。直至20世纪末UWB技术引起了美国联邦通信委员会(Federal Communications Commission,FCC)的关注,才逐步开始民用以及商业化的研究发展进程。其中,Ubisense公司于2011年提出了基于TDOA和AOA的UWB室内定位系统,定位精度可达15cm,测距范围达到50m[31]。此外,Zebra推出了Dart UWB系统,定位精度可达30cm,测距范围达到100m[32]。然而,在室内定位这一应用场景下,由于室内环境复杂,超宽带信号在传播中易受到多径和非视距现象的影响,很大程度影响了定位精度,难以实现大范围室内覆盖,较高的系统建设成本也成为了制约超宽带定位技术发展的瓶颈。


1.5 地磁定位技术

地磁场定位技术,是指利用地磁场特征的特异性获取位置信息的技术方案[33]。利用地磁场作为位置匹配信息进行定位最开始在机器人自定位领域提出,Suksakulchai等提出地磁传感器除了可以用作方向判断外,还可以利用地磁信息经过室内结构的扰动造成的特异性进行机器人的自定位,通过对地磁信息的收集和匹配,完成了在走廊中的初步位置的确定。


随着地磁定位技术被人们所认知,越来越多的研究者投身于该领域。Janne Haverinen提出,现代钢筋混凝土的建筑框架给室内的磁场造成了一种系统层面上的扰动,这种特有的扰动使得每个室内场景中的地磁场分布都有着其独特的模式。因此,通过记录建筑中特有的地磁信息分布,并根据再次获取的地磁信息进行匹配实现定位,地磁定位技术可达到90%以上的定位准确度[34]。地磁信息分布在任意建筑内,因此地磁定位技术无需额外的接入装置,作为民用推广的室内定位导航系统,地磁定位技术是一个不错的选择。Chung等通过设计一个特殊的终端设备配合地磁传感器,能够实现二维空间的定位,平均精度4.7m[35]。但是由于其磁场强度的读数是基于地磁传感器自身坐标系,为了能够直接匹配地磁信息,要求在采集地磁数据时,对每一个位置点,采集终端需要在原地旋转一周来收集所有朝向上的地磁信息读数,这种做法大大增加了采集地磁数据的工作量。Grand提出的利用坐标系变化的方法避免了采集所有朝向上的磁场读数,减少了数据收集的工作量[36]


1.6 视觉定位技术

近几年来,随着视觉传感器的发展,利用视觉传感器获取目标周围环境特征的定位方法得到了重视。根据视觉传感器数量的不同,当前的视觉定位技术分为单目视觉定位技术、双目视觉定位技术和全方位视觉定位技术。单目视觉定位技术是利用一张或者多张图片信息获取位置信息。基于单幅图像的定位是根据已知目标特征在世界坐标系下的表示、目标特征在图像上的投影和一些额外的特征参数,得到世界坐标系和摄像机坐标系之间的位姿关系来实现的。Liu等利用图像中的直线特征与由摄像机的光心形成的投影平面的法向量与目标自身的直线正交的特性,建立几何模型实现定位[37-38]。此种定位方法要求3条直线不能同时平行和与光心共面,以此构造3个非线性方程,但是求解非线性方程组比较困难且容易引入较大的计算误差。


由于单个摄像头视野范围小,因此可获取的深度信息少,从而导致单目视觉定位精度低。近年来,双目视觉定位成为研究热点。传统的双目视觉定位系统通过2个彩色摄像头同时获取具有一定视差的2张图片来实现定位。微软新体感工具Kinect的推出,使得实现视觉定位变得更加简单。通过Kinect工具得到实现目标场景的高质量彩色图像和高质量深度图像。Nakano等将Kinect用于室内定位,其硬件简单、成本较低[39]。Wang等提出了一种基于RGB-D的对楼梯、人行道和交通信号灯的图像检测与识别方法,为有视觉障碍的人群提供帮助[40]


由于传统的摄像机的视野范围有限,不能同时获取周围环境中所有目标的位置。Yagi等首次将基于双曲反射镜面的全方位视觉系统应用于移动机器人定位与导航[41]。目前全方位视觉系统主要分为两大类,一类是由传统视觉传感器组成的全方位视觉传感器,一类是反射镜面型全方位视觉传感器。前者采用图像拼接技术将每个传感器获取的图像拼接成全方位图像;后者采用至少一个曲面镜和一个传统视觉传感器组成,通过曲面镜的形状控制全方位视觉传感器的视野范围,相对于前者,不需要大量的计算,实时性好,但是会由于反光镜的镜面形状造成生成的图像分辨率不均匀。


1.7 机会信号定位技术

在室内、峡谷等GNSS信号拒止的环境下,仍然充斥着大量的无线电信号。机会信号定位技术利用这些泛在的无线电信号,通过实现对无线信号的随机接入、融合处理实现定位与导航。机会信号导航(Opportunistic Navigation,OpNav)接收机连续不断地从周围环境中搜索无线电信号,并从信号特征中提取定位与导航信息[42]。OpNav技术将周围环境中的无线电信号作为潜在的机会信号,包括GNSS信号及其干扰装置发出的信号、铱星卫星信号、Wi-Fi信号、电视信号、无线电广播信号、手机信号等。OpNav接收机利用相关的先验信息估计每个机会信号的相对定时和频偏、发射位置等状态参数。这种估计问题类似于机器人技术中同步定位与地图构建(Simultaneous Localization and Mapping,SLAM)问题[43]。但是OpNav技术不同于传统SLAM,和SLAM地图相比较,机会信号的信号面貌是动态的。


Carlos对数字视频广播(Digital Video Broadcasting,DVB)信号定位进行了研究,给出了其基本定位方法[44];Chun Yang利用数字电视(Digital Television,DTV)信号、GSM 信号与CDMA2000等多种机会信号,实现了室外空旷环境下3m 的定位精度,但在市区及室内环境中定位精度较低[45]。2012年6月英国航太系统公司高级技术中心研发了基于OpNav技术的NAVSOP系统,用户能够利用充斥在自己周围的多种无线信号估算自己的位置[46],定位误差为几米,但是在室内环境下,定位精度仍然不能满足需求。


1.8 组合定位技术

由于各种导航定位技术都有各自的优缺点以及最合适的使用场景,而室内环境相对来说比较复杂,采用单一的定位手段很难实现高可靠、高精度的定位。但是可以通过组合多种导航技术实现导航与定位。多传感器组合是使用一种可靠的估计方法,将多种有互补特性的传感器数据组合,以获得优于各个传感器的系统性能的过程[47]。一种对组合导航较为公认的理解是使用惯性传感器信息构造系统方程并对导航状态进行预测。但是低成本的惯性传感由于误差存在严重的温度敏感性而不能长时间稳定工作,因此在实际应用中需要依赖其他定位技术如无线电定位技术。


近年来,国内外不同机构的研究人员提出了许多组合导航平台[48-50]。常用的组合导航估计方法有Kalman滤波器、粒子滤波器等。Zhuang和EIShemiy提出了一种Wi-Fi和MEMS传感器进行紧组合的方法[51]。Ezani等提出了将Wi-Fi和磁场匹配一种从区域到点的组合方式用于室内定位[52]。Pritt等提出了将磁场强度作为虚拟Wi-Fi AP与Wi-Fi进行组合的方式,并与区域到点的组合方式进行了对比[53]。余彤提出了一种基于改进的高斯-牛顿迭代算法的惯性传感器与LiDAR 组合导航,实现室内定位和SLAM[54]


1.9 协同定位技术

协同定位概念在在20世纪90年代由Kurazume Ryo等首次提出[55],并应用于多机器人定位研究。协同定位技术的基本思想是利用相邻节点之间的附加测量信息提高定位精度,如图4所示。协同定位技术进行位置解算首先需要满足多个未知节点之间可以相互传递信息或者未知节点之间可以互相测向、测距或者邻接关系或者未知节点可以利用历史位置信息辅助完成当前定位。


图4 协同定位技术


美国Sarnoff Corporation在提出了“teamwork effect”,即N 节点网络通过协同将定位误差提高至原来的1/N,其中各个节点配有惯性导航系统(Inertial Navigation System,INS)和无线电测距、通信设备[56]。Wymeersch等提出了一个分布式协同定位算法SPAWN,并在100节点网络中进行了性能验证[57]


1.10 导航通信一体化定位技术

通信系统具有覆盖范围广、稳定性强、普及度高等优点。利用通信系统进行室内定位,可有效解决卫星定位系统室内覆盖差的问题,同时也可有效缩小Wi-Fi等指纹定位系统的建设及维护成本。但通信信号不是为定位设计,为此,提出了用通信导航一体化信号进行定位,即TC-OFDM 定位理论[13]。基于该理论,可实现导航信号与第五代移动通信系统(The 5th Generation Communication System,5G)信号的一体化定位,受益于5G中采用的毫米波及多入多出(Multiple-Input Multiple-Output,MIMO)技术,终端通过接收各个基站的通导一体化信号,通过实时解算,可获得亚米级精度的实时位置信息。


利用TC-OFDM 系统与其他定位系统的融合,构成羲和导航系统,可实现广域室内外高精度定位的无缝覆盖,如图5所示。该系统具有定位精度高、覆盖性强、成本低等优点,预计将在2020年对我国多个省市实现无缝覆盖。


图5 羲和系统示意图


2 室内定位中的关键技术


2.1 互相关干扰消除技术

在室内复杂的定位环境中,接收机很有可能接收到定位源直射的强信号和经过反射、折射的弱信号,强信号和弱信号的功率差可以达到20~30dB[58]。此时在弱信号的相关解算中,强信号产生的互相关峰与弱信号产生的自相关峰幅值处于同一量级,很有可能对弱信号的捕获造成不利影响。因此在定位过程中通常需要通过消除互相关干扰的影响达到捕获弱信号的目的,其中常用的方法有子空间投影法和扣除法。

  2.1.1 子空间投影法

  子空间投影法是在载波多普勒、载波相位以及码相位构建的信号子空间     中生成新码,并将待检测的弱信号在此空间内分解并产生出与强信号完     全正交、与弱信号相关性强的新码,以此码进行弱信号的捕获。由于新     码的构建需要实时运算,而此运算中需要进行大量的矩阵和向量运算,     因此构建新码十分困难。E.P.Glennon提出改变Gold码的均衡性使得本

  地码与强干扰信号互相关性最小,但该方法同时也会降低一定的自相关     性[59-60]


  2.1.2 扣除法

  扣除法比较常见的有两种方法:一是利用已捕获的强干扰信号的多普勒     频移、载波相位、码相位、信号幅度等参数在本地接收机内进行强干扰信号的重构,然后将强信号从射频信号中扣除,再进行弱信号的捕获;二 是在做完接收信号与本地码的相关运算后从中扣除强干扰信号的互相关值,以此消除强干扰信号对弱信号捕获的影响。根据扣除操作发生的位置是在相关运算前和后可以分为前端消除法和后端消除法。与子空间投影法相比,扣除法占用资源少、易实现,但对强信号的参数依赖程度大,当强信号的参数估计误差较大时,扣除法对互相关干扰的消除作用就会减小甚至不起作用。


2.2 非视距效应消除技术

非视距效应是由于定位信号源与定位终端之间存在障碍物,导致定位信号无法沿视距传播,只能通过折射、反射等方式传播。由此产生的误差称为非视距(Non-Line of Sight,NLOS)误差。在室内定位中,由于建筑物内的复杂结构和经常性的人员流动导致非视距效应十分显著。影响定位精度的主要误差来源有测量误差和非视距误差,其中非视距误差远远大于测量误差,因此消除非视距效应是提高室内定位精度的主要方式。


  2.2.1 极大似然算法

 在非视距环境中,可以利用测量噪声、非视距误差统计和 LOS/NLOS距离  概率模型构建最大似然问题进行定位解算[61],消除非视应。 Gezici使用最  大似然算法最大化联合概率密度函数剔除非视距观测量[62],Qi采用最大后  验概率估计非视距误差统 计分布[63]。


2.2.2 最小二乘算法

在视距环境中室内定位最广泛的算法之一是最小二乘法,在得到测量量后建立方程解出定位终端的位置。而在非视距环境下也可以通过最小二乘法进行定位解算。残差加权(RWGH)算法是Chen提出的一种针对非视距环境的定位算法[64],可以有效减小非视距效应对定位精度的影响。

虽然众多学者对非视距误差的消除进行了大量研究,但由于非视距的复杂性,目前消除模型仍难以有效消除,仍然是影响室内定位精度的关键问题之一。


2.3 特征聚类技术

在基于指纹信息的定位方法中,通常采用特征聚类技术将离群点剔除,以此减小离群点对定位结果的影响,提高定位精度。

 2.3.1HiWL方法

 聚类算法通常需要使用大量数据进行训练,但为指纹库中每个数据点进行  位置标记是非常繁琐的,为此HiWL 方法使用隐形马尔科夫模        型 (HiddenMarkovModel,HMM)对未标记的数据进行位置分类[65]。在训  练阶段,该方法需要一定的室内拓扑信息。通过HMM 训练,系统可以获  得地理坐标和信号分布之间的映射关系,因此HiWL方法可以将未标记的  指纹地图与地理坐标联系起来。但HMM 方法需要通过大量的训练数据集  保证学习结果的准确性[66],提高了系统的计算复杂度。


 2.3.2UMLI方法

 为了减少计算量,UMLI方法采用聚类方法对未标记数据进行分类[67]。训  练阶段通过聚类分析,将有相似特征的相邻参考点聚集为一类。以此将未  标记的数据进行位置标记,减少测量和标记的工作量。UMLI方法首先将  未标记的指纹地图映射到对应的房间中,然后在房间中进行精度更高的定  位解算。UMLI方法通过采用分层定位的方法提高了房间定位的精度。

 

2.4 融合滤波技术

在室内环境下,单一的定位技术无法覆盖全部区域,且定位精度有限。因此需要使用多种传感器、多种定位信号定位。在此过程中就需要融合滤波技术将不同定位源的数据进行融合定位。


通常融合滤波分为三类,数据融合、特征融合和决策融合[68]。表1所示为三类融合方法的一些相关特性。


表1 不同融合方法的相关特性


根据处理结构的不同,也可以将融合滤波分为集中式、分布式和混合式。集中式融合滤波需要一个处理中心收集数据进行处理,而分布式融合滤波中每个传感器、定位信号接收器单独处理自己的数据,并将结果发送到进行全局分析的节点。混合式融合滤波中一部分传感器和定位信号接收器自己进行数据的预处理,而处理中心也会对一些原始数据进行融合并进行最后的决策融合。


如果一个系统中信号源产生的是相同物理测量量,那么就可以进行数据融合;相反若系统中的原始数据是异构的,那么就不能直接进行数据融合,需要提高到特征或决策融合的高度。


3 结论


本文对目前室内定位技术进行了简单介绍,分别针对不同种类的主流定位手段,进行了详细介绍与分析,并对室内定位中常见的技术问题进行了讨论。通过对比分析,可以得到如下结论:


1)室内定位技术发展迅速,亚米级及厘米级的高精度位置服务需求广泛;


2)室内定位技术种类繁多,不同技术之间各有优缺点,广域与局域定位技术形成一定互补;


3)组合导航与多系统融合定位可有效提高定位精度及定位鲁棒性;


4)导航通信一体化技术具有成本低、精度高等优点,并易于与其他定位系统融合,成为未来室内外定位技术的研究热点之一。


随着人们对室内位置服务需求的持续增加,室内定位技术将会得到进一步发展。新一代通信技术的发展,会大幅推动室内定位技术的进步,毫米波及MIMO技术的应用,可有效增加测距精度并提高定位终端的抗多径能力。低成本亚米级甚至厘米级的室内定位技术成为今后的研究趋势与热点。

------------      ------------

来源:《导航定位与授时》2018年5月

作者:邓中亮,尹露,唐诗浩,刘延旭,宋汶轩

第一作者简介:邓中亮(1965-),男,北京邮电大学教授,博导,主要从事室内定位方面的研究。

来源:《导航定位与授时》


荐读

点击下文标题即可阅读

武大这个团队问鼎室内定位大赛全球总冠军!

物联网定位技术超全解析!定位正在从室外走向室内

室内定位技术:分类、方法与应用综述

编辑 / 张艺洪  审核 /  张艺洪 卞艺潼

指导:万剑华教授(微信号wjh18266613129)

    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存