查看原文
其他

武汉大学李星星教授团队:PPP-RTK综述:进展、挑战与机遇

慧天地 2022-12-21

The following article is from 卫星导航国际期刊 Author 李昕

点击上方“慧天地”关注我们

文章转载自微信公众号卫星导航国际期刊,作者:李昕,撰稿:李昕,编辑:星航,校对:李星星教授,版权归原作者及刊载媒体所有。

标题:PPP-RTK综述:进展、挑战与机遇

作者:李星星,黄佳欣,李昕*,申志恒,韩俊杰,李林阳,王波

主题词PPP-RTK模糊度快速固多频多系统GNSS智能设备;多源传感器融合      

   (图片来自作者)   


Review of PPP–RTK: achievements, challenges, and opportunitiesXingxing Li, Jiaxin Huang, Xin Li*, Zhiheng Shen, Junjie Han, Linyang Li and Bo WangSatellite Navigation (2022) 3: 28

引用文章:

Li, X. X., Huang, J. X., Li, X. et al. Review of PPP–RTK: achievements, challenges, and opportunities.  Satell Navig 3, 28 (2022). https://doi.org/10.1186/s43020-022-00089-9

PDF文件下载链接:

‍https://satellite-navigation.springeropen.com/articles/10.1186/s43020-022-00089-9

                -长按识别二维码查看/下载全文-


Editorial Summary

Review of PPP-RTK 

The PPP-RTK method, which combines the concepts of Precise of Point Positioning (PPP) and Real-Time Kinematic (RTK), is proposed to provide a centimeter-accuracy positioning service for an unlimited number of users. Recently, the PPP-RTK technique is becoming a promising tool for emerging applications such as autonomous vehicles and unmanned logistics as it has several advantages including high precision, full flexibility, and good privacy. 

This paper gives a detailed review of PPP-RTK focusing on its implementation methods, recent achievements as well as challenges and opportunities. The recent efforts and progress such as improving the performance of PPP-RTK by combining multi-GNSS and multi-frequency observations, single-frequency PPP-RTK for low-cost devices, and PPP-RTK for vehicle navigation are addressed. The main issues that impact PPP-RTK performance are highlighted and the new opportunities brought by the rapid development of low-cost markets, multiple sensors, and new-generation LEO navigation constellation are discussed.




本文亮点


1.系统介绍了PPP-RTK的模型、方法与应用,总结了相位小数偏差估计、精密大气增强改正数提取与建模、非差模糊度快速固定等关键技术的研究进展,概述了北斗三号精密单点定位服务(PPP-B2b)、QZSS-CLAS、伽利略HAS以及各大商业公司的PPP-RTK系统的建设情况和服务性能。


2.重点总结了PPP-RTK技术从单/双系统至多系统、从双频至多频、从后处理至实时车载导航应用的发展历程与最新进展。基于武汉大学测绘学院自主研发的GREAT(GNSS+ REsearch, Application and Teaching)软件,评估了PPP-RTK在不同应用场景下的定位性能。


3.讨论了现阶段PPP-RTK技术面临的挑战,包括电离层活跃、复杂地形条件下的高精度大气建模,城市环境下多路径与NLOS误差探测与识别,服务端与用户端完好性监测等。指出了新兴的低轨星座以及多传感器融合为PPP-RTK带来的机遇。


内容简介




PPP-RTK技术集成了传统精密单点定位(PPP)与实时动态定位(RTK)的优点,可为海量用户提供基于单接收机的实时快速厘米级位置服务。近年来,得益于服务范围广、精度高、隐私性好等优势,PPP-RTK已经成为自动驾驶、无人机、移动机器人等新兴应用领域的首选技术。本文从研究背景、国内外研究现状、模型与方法、最新研究进展以及发展前景等方面对PPP-RTK技术进行了综述。介绍了相位小数偏差估计、精密大气增强改正数提取与建模、非差模糊度快速固定等关键技术,概述了北斗三号精密单点定位服务(PPP-B2b)、QZSS-CLAS、伽利略HAS以及各大商业公司的PPP-RTK系统的建设情况和服务性能。重点总结了PPP-RTK技术从单/双系统至多系统、从双频至多频、从后处理至实时车载导航应用的发展历程与最新进展。最后,讨论了现阶段PPP-RTK技术面临的挑战与机遇。



  图文导读 


I PPP-RTK系统构成与服务流程

PPP-RTK系统主要由服务端和用户端两大部分组成。如图1所示,服务端接收全球参考站网的观测数据实现精密轨道、钟差、相位小数偏差等产品的估计、生成与播发;同时接收区域参考站网的观测数据,基于非差模糊度固定技术提取高精度大气增强改正信息并播发给用户。在用户端,接收到来自服务端的各类产品之后便可以实现基于单台接收机的快速精密定位。



图 1 PPP-RTK系统服务流程。


II PPP-RTK增强系统建设


随着实时定位技术的快速发展,基于PPP-RTK模式的增强系统纷纷建立。在政府层面,日本首先基于QZSS系统建立了厘米级增强服务系统(CLAS)。该系统利用日本的密集地面参考网络生成GPSGalileoQZSS卫星的各类定位增强改正数,并通过QZSS卫星的L6频段广播播发,为日本及周边区域的用户提供一分钟内收敛的厘米级定位服务。中国新一代北斗三号系统以及欧盟的Galileo系统也计划建立各自的PPP-RTK增强系统。根据2019年发布的北斗卫星导航系统应用服务体系白皮书,北斗三号的PPP服务将利用GEO卫星的PPP-B2b信号播发各类增强改正数以实现不同精度和收敛时间的精密单点定位。系统的第二阶段计划结合地基参考站网提供的大气增强改正数来实现区域增强PPP-RTK服务。Galileo则规划了高精度服务(HAS)系统。该系统将通过Galileo E6-B信号和网络播发两种模式为用户提供覆盖全球的实时PPP服务和覆盖欧洲地区的PPP-RTK服务


       图 2 北斗精密单点定位服务系统。
近年来,许多商业公司也开始提供基于PPP-RTK的高精度定位服务,如天宝的CenterPoint-RTX Fast、诺瓦泰的TerraStar-X、Ublox的PointPerfect等。中国的千寻、合众思壮以及中海达等企业也在建立了相关的系统,提供相应的高精度定位服务。这些系统的服务区域遍布世界各地,被广泛应用于自动驾驶、无人机、精密农业、行人导航等大众市场。


III 多系统PPP-RTK


考虑到多系统融合在提升卫星数目、改善几何构型等方面的优势,许多学者开始研究多系统融合的PPP-RTK方法。2015年,Ojidk等人首先实现了基于GPS和BDS双系统融合的PPP-RTK;Nadarajah等人则于2018年提出了融合GPS/Galileo/BDS三系统的PPP-RTK方法。此后,Ma和Li等人进一步将PPP-RTK方法拓展至GPS/GLONASS/Galileo/BDS四大卫星导航系统(Ma et al.2020; Li et al.2021a)。Li(2021a)等人的研究验证了多系统融合PPP-RTK在加快收敛速度、提升模糊度固定成功率和定位精度方面的优势,尤其是在观测条件受限的情况下。论文中通过设置不同的截止高度角模拟观测环境受限的场景,不同系统组合的单历元模糊度固定成功率如图3所示。随着截止高度角的不断升高,单系统PPP-RTK的模糊度固定成功率迅速下降,当截止高度角超过30°时,模糊度固定率已不足50%;与之相反的,四系统融合PPP-RTK方案的固定率始终保持在98%以上。结果表明相较于单系统,多系统融合PPP-RTK可以显著提升模糊度固定成功率从而保障定位服务的稳定性


     图 3 HKSC测站不同系统组合在10度至30度截止高度角情况下的单历元模糊度固定成功率。IV 多频PPP-RTK
近年来新发射的GPS Block-IIF、北斗、Galileo等卫星都可以传输三种频率以上的导航信号,使得基于多频信号的精密单点定位成为可能。相关的研究已经表明多频观测值组合可以加速模糊度固定,缩短初始化时间(Geng et al.2013;  Gu et al.2015;  Li et al.2019)。在此基础上,Li 等人在2022年提出了一种基于GPS/Galileo/BDS三频GNSS观测值组合的PPP-RTK方法并验证了在车载动态场景下的定位性能(Li et al.2022d)。图4展示了在城市环境下,双频动态PPP、双频PPP-RTK和三频PPP-RTK定位序列的比较结果。在信号受遮挡较为频繁的场景下,PPP几乎无法完成收敛;双频PPP-RTK虽然能够快速固定,但也无法避免频繁的重新固定和错误固定情况的出现。而三频PPP-RTK定位序列更加稳定,尤其是当观测卫星数量急剧下降时,三频PPP-RTK的错误固定情况更少,从而保障了定位服务的可靠性。

图 4 城市环境下的双频动态PPP、双频PPP-RTK和三频PPP-RTK定位序列比较。
PPP-RTK车载动态导航
随着自动驾驶的快速兴起,实时高精度位置服务愈发重要。在城市复杂环境下,单一的GNSS手段已经难以满足连续高精度定位的需求。关于PPP-RTK的研究也开始转向多源传感器融合(Gu et al.2021; Li et al.2021d),图5比较了城市环境下PPP-RTK和PPP-RTK/INS紧组合的定位序列。结果表明在GNSS信号遮挡严重的情况下,惯性导航系统的辅助使得PPP-RTK的定位序列更加稳定,保障了在信号短时中断情况下的定位服务的持续性。然而民用惯性导航系统的精度发散较快,也无法应对长时间信号中断的挑战,于是学者们开始进一步引入视觉导航系统(Gu et al.2022; Li et al.2022e)。图6展示了PPP-RTK、PPP-RTK与低成本MEMS组合(PPP-RTK/MEMS)、PPP-RTK与战术级惯导(PPP-RTK/TINS)以及PPP-RTK加MEMS加视觉(PPP-RTK/MEMS/Vision)组合的定位结果。定位序列表明视觉信息的加入可以进一步提升PPP-RTK定位的精度和可靠性,使得采用低成本MEMS的多源融合PPP-RTK方案可以达到与PPP-RTK加战术级惯导增强方案相媲美的效果。这将大大降低多源传感器融合PPP-RTK的成本从而拓宽其应用市场。


图 5 城市环境下PPP-RTK和PPP-RTK/INS紧组合定位序列比较。


图 6 PPP-RTK、PPP-RTK/MEMS、PPP-RTK/TINS、PPP-RTK/MEMS/Vision组合定位序列比较。


VI 低轨增强PPP-RTK
近年来,低轨卫星以其星座与信号方面的独特优势,受到导航领域的关注与青睐,成为下一代卫星导航系统发展的关注重点。低轨卫星具有几何变化快,信号强度高等优点,为缩短精密单点定位的收敛时间带来新的机遇(Ge et al.2018,2022; Li et al.2019b,2019c)。而PPP-RTK与低轨卫星相结合则有望实现在稀疏参考站网情况下的瞬时模糊度固定,从而扩展PPP-RTK的覆盖范围。图7展示了在800千米尺度的参考站网情况下,不同的低轨卫星星座对PPP-RTK定位的仿真增强效果。实验分别仿真了包含72颗、144颗、和360颗卫星的低轨星座并用于增强PPP-RTK定位。实验结果表明了加入低轨卫星观测值可以在地面参考站较为稀疏的情况下显著提升PPP-RTK的定位性能。与无低轨增强的PPP-RTK相比,加入360颗卫星的低轨星座观测值可以将首次固定时间从161秒缩短至12秒,这极大的提升了PPP-RTK在稀疏参考网情况下的应用潜力。


图 7 800千米尺度参考网情况下的低轨增强PPP-RTK仿真定位结果。


  参考文献 

1 Al-Shaery A., Lim S., & Rizos C. (2011). Investigation of different interpolation methods used in network-RTK for virtual reference station technique, Journal of Global Positioning Systems, 10 (2), 136–148. https://doi.org/10.5081/jgps.10.2.136  2 Altti J., Shaojun F., Wolfgang S., Washington O., Chris H., Terry M., & Chris H. (2013). Integrity monitoring of fixed ambiguity Precise Point Positioning (PPP) solutions. Geo-spatial Information Science, 16:3, 141-148, https:// doi.org/10.1080/10095020.2013.817111 3 B Angelino V., Baraniello R., & Cicala L. (2012). UAV position and attitude estimation using IMU, GNSS and camera. In: 15th international conference on information fusion, Singapore, 9 July, 2012, 735–742. 4 Banville S., Geng J., Loyer S., Schaer S., Springer T., & Strasser S. (2020). On the interoperability of IGS products for precise point positioning with ambiguity resolution. Journal of Geodesy, 94(1):10. https://doi.org/10.1007/s00190-019-01335-w 5 Bevis M., Businger S., Herring A., Rocken C., Anthes A., & Ware H. (1992). GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. Journal of Geophysical Research: Atmospheres, 97(D14), 15787-15801. 6 Brown G., & Hwang P. (1986). GPS Failure Detection by Autonomous Means within the Cockpit. Institute of Navigation 42nd Annual Meeting. 5-12. 7 Cao S., Lu X., & Shen S. (2021). GVINS: Tightly Coupled GNSS-Visual-Inertial for Smooth and Consistent State Estimation. IEEE Transactions on Robotics, 1-18. https://doi.org/10.1109/TRO.2021.3133730 8 Collins P. (2008). Isolating and estimating undifferenced GPS integer ambiguities. In: Proceedings of the 2008 national technical meeting of the institute of navigation, San Diego, CA, 28-30 January, 2008, 720-732. 9 Ciraolo L., Azpilicueta F., Brunini C., Meza A., & Radicella M. (2007). Calibration errors on experimental slant total electron content (TEC) determined with GPS. Journal of Geodesy, 81, 111–120. https://doi.org/10.1007/s00190-006-0093-1 10 Cabinet Office. (2020). Quasi-Zenith Satellite System performance standard (PS-QZSS-002). https://qzss.go.jp/en/technical/download/pdf/ps-is-qzss/ps-qzss-002.pdf?t=1618040032826. 11 Dai L., Han S., Wang J., & Rizos C. (2003). Comparison of interpolation algorithms in network-based GPS techniques. Navigation - Journal of The Institute of Navigation, 50(4):277–293. https://doi.org/10.1002/j.2161-4296.2003.tb00335.x 12 Dong D., & Bock Y. (1989). Global positioning system network analysis with phase ambiguity resolution applied to crustal deformation studies in California. Journal of Geophysical Research, 94(B4):3949–3966. 13 Duan J., Bevis M., Fang P., Bock Y., Chiswell S., Businger S., ... & King W. (1996). GPS meteorology: Direct estimation of the absolute value of precipitable water. Journal of Applied Meteorology and Climatology, 35(6), 830-838. 14 Feng S, Washington O, Terry M, Chris H & Chris H. (2009). Carrier phase-based integrity monitoring for high-accuracy positioning. GPS Solution 13:13–22. https://doi.org/ 10.1007/s10291-008-0093-0 15 Feng S., Ochieng W., Samson J., Tossaint M., Hernandez-Pajares M., Juan J., . . . Jofre M. (2012). Integrity Monitoring for Carrier Phase Ambiguities. Journal of Navigation, 65(1), 41-58. doi:10.1017/S037346331100052X 16 Fotopoulos G. (2000) Parameterization of carrier phase corrections based on a regional network of reference stations. In: Proceedings of the 13th international technical meeting of the satellite division of the institute of navigation (ION GPS 2000), Salt Lake City, UT, USA, 19-22 September, 2000, 1093-1102.
17.    Gao Y., Li Z., & McLellan JF. (1997). Carrier phase based regional area differential GPS for decimeter-level positioning and navigation. In: Proceedings of the 10th international technical meeting of the satellite division of the institute of navigation (ION GPS 1997), Kansas City, Missouri, USA, 16-19 September, 1997, 1305-1313.
18.    Gao Z., Zhang H., Ge M., Niu X., Shen W., Wickert J., & Schuh H. (2017). Tightly coupled integration of multi-GNSS PPP and MEMS inertial measurement unit data. GPS Solutions, 21(2):377–391.
19.    Gao Z., Ge M., Li Y., Chen Q., Zhang Q., Niu X., Zhang H., Shen W., & Harald S. (2018). Odometer, low-cost inertial sensors, and four-GNSS data to enhance PPP and attitude determination. GPS Solutions, 22(3), 1-16.
20.     Gao R., Xu L., Zhang B., & Liu T. (2021). Raw GNSS observations from Android smartphones: characteristics and short-baseline RTK positioning performance. Measurement Science and Technology, 32:8. https://doi.org/10.1088/1361-6501/abe56e
21.    Garrett S., & Sunil B. (2013). Integrity monitoring in Precise Point Positioning. York University, Toronto, Canada. Proceedings of the 26th International Technical Meeting of the ION Satellite Division, ION GNSS+2013, Nashville, Tennessee, September 16-20,2013.
22.    Ge H., Li B., Jia S., Nie L., Wu T., Yang Z., Shang J., Zheng Y., & Ge M. (2022). LEO enhanced global navigation satellite system (LeGNSS): progress, opportunities, and challenges. Geo-spatial Information Science, 25(1), 1-13.
23.   Ge H., Li B., Ge M., Zang N., Nie L., Shen Y., & Schuh H. (2018). Initial assessment of precise point positioning with LEO enhanced global navigation satellite systems (LeGNSS). Remote Sensing, 10(7): 984.
24.    Ge M., Gendt G., Rothacher M., Shi C., & Liu J. (2008). Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. Journal of Geodesy, 82(7):389–399. https://doi.org/10.1007/s00190-007-0187-4
25.    Geng J., Meng X., & Dodson A.H., & Teferle F.N. (2010). Integer ambiguity resolution in precise point positioning: method comparison. Journal of Geodesy, 84, 569–581. https://doi.org/10.1007/s00190-010-0399-x
26.    Geng J., Teferle F.N., Meng X., & Dodson A.H. (2011). Towards PPP-RTK: ambiguity resolution in real-time precise point positioning. Advances in Space Research, 47(10):1664–1673.
27.    Geng J., & Y. Bock (2013). Triple-frequency GPS precise point positioning with rapid ambiguity resolution. Journal of Geodesy, 87(5):449-460.
28.    Geng J., & Bock Y. (2016). GLONASS fractional-cycle bias estimation across inhomogeneous receivers for PPP ambiguity resolution. Journal of Geodesy, 90, 379–396. https://doi.org/10.1007/s00190-015-0879-0
29.    Geng J., Guo J., Meng X., & Gao K. (2020). Speeding up PPP ambiguity resolution using triple-frequency GPS/BDS/Galileo/QZSS data.  Journal of Geodesy, 94, 1-15. https://doi.org/10.1007/s00190-019-01330-1
30.    Gianluca G., Mauro L., Matteo Z., & Giancarlo V. (2010). GNSS Integrity and Protection Level computation for Vehicular Applications. Proceedings of 16th Ka and broadband communications–navigation and earth observation conference. January 2010.
31.    Gu S., Lou Y., Shi C., & Liu J. (2015). BeiDou phase bias estimation and its application in precise point positioning with triple-frequency observable. Journal of Geodesy, 89(10): 979–992.
32.    Gu S., Dai C., Fang W., … &Niu X. (2021). Multi-GNSS PPP/INS tightly coupled integration with atmospheric augmentation and its application in urban vehicle navigation.  Journal of Geodesy, 95, 1-15. https://doi.org/10.1007/s00190-021-01514-8
33.    Gu S., Dai C., Mao. F., Fang W. (2022) Integration of Multi-GNSS PPP-RTK/INS/Vision with a Cascading Kalman Filter for Vehicle Navigation in Urban Areas. Remote Sens.  14, 4337. https://doi.org/10.3390/rs14174337
34.    Hernández-Pajares M., Juan JM., & Sanz J. (2006). Medium-scale traveling ionospheric disturbances afecting GPS measurements: Spatial and temporal analysis. Journal of Geophysical Research Atmospheres, 111(A7). https://doi.org/10.1029/2005JA011474
35.   Hernández-Pajares M., Juan JM., Sanz J., & Aragón-Àngel A. (2012). Propagation of medium scale traveling ionospheric disturbances at different latitudes and solar cycle conditions. Radio Science, 47, 1–22. https://doi.org/10.1029/2011RS004951
36.    Han S. (1997). Carrier phase-based long-range GPS kinematic positioning. Dissertation, School of Geomatic Engineering, The University of New South Wales.
37.    Han S., & Rizos C. (1997). Multipath effects on GPS in mine environments. In: 10th international congress of the International Society for Mine Surveying Fremantle, Australia.
38.    Hofmann-Wellenhof B., Lichtenegger H., & , J. (2001). Global Positioning System:Theory and practice. Springer Wien New York.
39.    Hopfield HS. (1972). Tropospheric range error parameters: Further studies 46. https://doi.org/NASA-CR-127559, APL/JHU-CP-015
40.    Hou P., Zhang B., & Yasyukevich YV., … & Zha J. (2022). Multi-frequency phase-only PPP-RTK model applied to BeiDou data. GPS Solutions, 26, 76. https://doi.org/10.1007/s10291-022-01263-x
41.    Hsu LT. (2017). GNSS multipath detection using a machine learning approach. In: IEEE International Conference on Intelligent Transportation Systems, October 2017, 1-6. https://doi.org/10.1109/ITSC.2017.8317700.
42.    Hu J., Zhang X., Li P., Ma F., & Pan L. (2020). Multi-GNSS fractional cycle bias products generation for GNSS ambiguity-fixed PPP at Wuhan University. GPS Solutions, 24(1):15.
43.    Juan B., Todd W., Laura N., Kazuma G., & Lance G. (2020). Solution separation-based FD to mitigate the Effects of Local Threats on PPP Integrity. In: 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), Portland, Oregon, April 2020, pp. 1085-1092.
44.    Juan B., Todd W., & Per E. (2012). Advanced RAIM User Algorithm Description: Integrity Support Message Processing, Fault Detection, Exclusion, and Protection Level Calculation. Proceedings of the 25th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2012), Nashville, TN, September 2012, pp. 2828-2849.
45.    Kazuma G, Juan B & Todd W. (2019). SBAS Corrections for PPP Integrity with Solution Separation. Proceedings of the 2019 International Technical Meeting of The Institute of Navigation, Reston, Virginia, January 2019, pp. 707-719. Doi: https://doi.org/10.33012/2019.16739
46.    Khodabandeh A., & Teunissen PJG. (2016). PPP-RTK and inter-system biases: the ISB look-up table as a means to support multi-system PPP-RTK. Journal of Geodesy, 90, 837–851.
47.    Khodabandeh A., & Tenissen PJG. (2018) On the impact of GNSS ambiguity resolution: geometry, ionosphere, time and biases. Journal of Geodesy, 92(6): 637-658.
48.    Laura N, Eduardo I & Lance de Groot. (2019). Integrity Performance for Precise Positioning in Automotive. 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2019), Miami, Florida, September 16-20.
49.    Laurichesse D., & Mercier F. (2007). Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP. In: 20th International Technical Meeting of the Satellite Division of The Institute of Navigation(2007 ION GNSS), 2007 ,Vol. 4, pp. 839–848.
50.    Laurichesse D., Mercier F., Berthias J. P., Broca P., & Cerri L. (2009). Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. Navigation, 56(2):135–149. https://doi.org/10.1002/j.2161-4296.2009.tb01750.x
51.    Lee Y. (1986). Analysis of Range and Position Comparison Methods as a Means to Provide GPS Integrity in the user Receiver. Institute of Navigation 42nd Annual Meeting. 1-4.
52.    Li X., Zhang X., & Ge M. (2011). Regional reference network augmented precise point positioning for instantaneous ambiguity resolution. Journal of Geodesy, 85(3):151–158. https://doi.org/10.1007/s00190-010-0424-0
53.    Li X., & Zhang X. (2012). Improving the estimation of uncalibrated fractional phase ofsets for PPP ambiguity resolution. Navigation, 65(3):513–529.
54.    Li M., & Mourikis AI. (2012). Improving the accuracy of EKF-based visual-inertial odometry. In: Proceedings of the IEEE international conference on robotics and automation, Saint Paul, MN, USA, 14-18 May, 2012, pp. 828–835.
55.    Li X., Ge M., Zhang H., & Wickert J. (2013). A method for improving uncalibrated phase delay estimation and ambiguity-fixing in real-time precise point positioning. Journal of Geodesy, 87:405–416. doi: 10.1007/s00190-013-0611-x.
56.    Li X., Dick G., Ge M., Helse S., Wickert J., & Bender M. (2014). Real-time GPS sensing of atmospheric water vapor: Precise point positioning with orbit, clock, and phase delay corrections. Geophysical Research Letters, 41:3615–3621. https://doi.org/10.1002/2013GL058721
57.    Li X., Ge M., Dai X., Ren X., Fritsche M., Wickert J., & Schuh H. (2015). Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. Journal of Geodesy, 89:607–635. https://doi.org/10.1007/s00190-015-0802-8
58.    Li P., Zhang X., & Guo F. (2017a). Ambiguity resolved precise point positioning with GPS and BeiDou. Journal of Geodesy, 91(1):25–40.
59.    Li T., Zhang H., Niu X., & Gao Z. (2017b). Tightly-Coupled Integration of Multi-GNSS Single- Frequency RTK and MEMS-IMU for Enhanced Positioning Performance. Sensors, 17(11):2462-2484. 10.3390/s17112462
60.    Li W., Nadarajah N., Teunissen PJG., & Khodabandeh A. (2017c). Array-aided single-frequency state-space RTK with combined GPS, Galileo, IRNSS, and QZSS L5/E5a observations. Journal of Surveying Engineering, 143(4): 04017006.
61.    Li X., Li X., Yuan, Y., Zhang, K., Zhang, X., & Wickert, J. (2018).Multi-GNSS phase delay estimation and PPP ambiguity resolution: GPS, BDS, GLONASS, Galileo. Journal of Geodesy, B4, 1-30. https://doi.org/10.1007/s00190-017-1081-3
62.    Li X., Liu G., Feng G., Yuan Y., Zhang K., & Ren X. (2019a). Triple-frequency PPP ambiguity resolution with multi-constellation GNSS: BDS and Galileo. Journal of Geodesy, 93(8):1105–1122.
63.    Li X., Ma F., Li X., Lv H., Bian L., Jiang Z., & Zhang X. (2019b). LEO Constellation-augmented multi-GNSS for Rapid PPP Convergence. Journal of Geodesy, 93 (5): 749–764. https://doi.org/10.1007/s00190-018-1195-2.
64.    Li B., Ge H., Ge M., Nie L., Shen Y., & Schuh H. (2019c). LEO Enhanced Global Navigation Satellite System (Legnss) for Real-time Precise Positioning Services. Advances in Space Research, 63 (1): 73–93. https://doi.org/10.1016/j. asr.2018.08.017.
65.    Li T., Zhang H., Gao Z., Niu X., & El-Sheimy N. (2019d). Tight fusion of a monocular camera, MEMS-IMU, and single-frequency multi-GNSS RTK for precise navigation in GNSS-Challenged environments. Remote Sensing, 11(6):610.
66.    Li G., & Geng J. (2019). Characteristics of raw multi-GNSS measurement error from Google Android smart devices. GPS Solutions, 23, 1-16.
67.    Li Z., Chen W., Ruan R., & Liu X. (2020a). Evaluation of PPP-RTK based on BDS-3/BDS-2/GPS observations: a case study in Europe. GPS Solutions, 24(2), 1-12.
68.    Li X., Liu G., Li X., Zhou F., Feng G., Yuan Y., & Zhang K. (2020b). Galileo PPP rapid ambiguity resolution with five-frequency observations. GPS Solutions, 24(1), 1-13. https://doi.org/10.1007/s10291-019-0930-3
69.    Li X., Li X., Liu G., Yuan Y., Freeshah M., Zhang K., & Zhou F. (2020c). BDS multi-frequency PPP ambiguity resolution with new B2a/B2b/B2a + b signals and legacy B1I/B3I signals. Journal of Geodesy, 94(100), 1-15. https://doi.org/10.1007/s00190-020-01439-8
70.    Li Z., Chen W., Ruan R. & Liu X. (2020d) Evaluation of PPP-RTK based on BDS-3/BDS-2/GPS observations: a case study in Europe. GPS Solut 24(2), 1-12. https://doi.org/10.1007/s10291-019-0948-6
71.    Li X., Huang J., Li X., Lyu H., Wang B., Xiong Y., & Xie W. (2021a). Multi-constellation GNSS PPP instantaneous ambiguity resolution with precise atmospheric corrections augmentation. GPS Solutions, 25 (3),1-13.
72.    Li X., Han X., Li X., Liu G., Feng G., Wang B., & Zheng H. (2021b). GREAT-UPD: An open-source software for uncalibrated phase delay estimation based on multi-GNSS and multi-frequency observations. GPS Solutions, 25(2), 1-9. https://doi.org/10.1007/s10291-020-01070-2
73.    Li X., Wang X., Liao J., Li X., & Lyu H. (2021c). Semi-tightly coupled integration of multi-GNSS PPP and S-VINS for precise positioning in GNSS-challenged environments. Satellite Navigation, 2(1),1-14.
74.    Li X., Li X., Huang J., Shen Z., Wang B., Yuan Y., & Zhang K. (2021d). Improving PPP-RTK in urban environment by tightly coupled integration of GNSS and INS. Journal of Geodesy, 95(12), 1-18.
75.    Li B., Ge H., Bu Y., Zhang Y., & Yuan L. (2022a). Comprehensive assessment of real-time precise products from IGS analysis centers. Satellite Navigation, 3, 1-17. https://doi.org/10.1186/s43020-022-00074-2
76.    Li X., Li X., Jiang Z., Xia C., Shen Z., & Wu J. (2022b). A unified model of GNSS phase/code bias calibration for PPP ambiguity resolution with GPS, BDS, Galileo and GLONASS multi-frequency observations. GPS Solutions, 26, 1-16. https://doi.org/10.1007/s10291-022-01269-5
77.    Li P., Cui B., Hu J., Liu X., Zhang X., Ge M., & Schuh H. (2022c). PPP-RTK considering the ionosphere uncertainty with cross-validation. Satellite Navigation, 3(1), 1-13. https://doi.org/10.1186/s43020-022-00071-5
78.    Li X., Wang B., Li X., Huang J., Lyu H., & Han X. (2022d) Principle and performance of multi-frequency and multi-GNSS PPP-RTK. Satellite Navigation, 3(1), 1-11. https://doi.org/10.1186/s43020-022-00068-0
79.    Li X., Li X., Li S., Zhou Y., Sun M., Xu Q., & Xu Z. (2022e) Centimeter-accurate vehicle navigation in urban environments with a tightly integrated PPP-RTK/MEMS/vision system. GPS Solutions 26, 124. https://doi.org/10.1007/s10291-022-01306-3
80.    Li X., Wang H., Li X., Li L., Lv H., Shen Z., Xia C., & Gou H. (2022f) PPP rapid ambiguity resolution using Android GNSS raw measurements with a low-cost helical antenna. J Geod 96, 1-14. https://doi.org/10.1007/s00190-022-01661-6
81.    Liu S., Sun F., Zhang L., Li W., & Zhu X. (2016). Tight integration of ambiguity-fixed PPP and INS: model description and initial results. GPS solutions, 20(1):39-49.
82.    Liu Y., Ye S., Song W., Lou Y., & Chen D. (2017a) Integrating GPS and BDS to shorten the initialization time for ambiguity-fixed PPP. GPS solutions, 21(2):333-343.
83.    Liu Y., Song W., Lou Y., Ye S., & Zhang R. (2017b). GLONASS phase bias estimation and its PPP ambiguity resolution using homogeneous receivers. GPS solutions, 21(2):427-437.
84.    Liu Y., Ye S., Song W., Lou Y., & Gu S. (2017c). Rapid PPP ambiguity resolution using GPS+GLONASS observations. Journal of Geodesy, 91(4):441-455.
85.    Lu C., Li X., Zus F., Heinkelmann R., Dick G., Ge M., Wickert J., & H. Schuh. (2017), Improving BeiDou real-time precise point positioning with numerical weather models. Journal of Geodesy, 91(9), 1019-1029. https://doi.org/10.1007/s00190-017-1005-2
86.    Luo X., Lou Y., Xiao Q., Gu S., Chen B., & Liu Z. (2018). Investigation of ionospheric scintillation effects on BDS precise point positioning at low-latitude regions. GPS Solutions, 22(63), 1–12. https://doi.org/10.1007/s10291-018-0728-8
87.    Lynen S., Achtelik MW., Weiss S., Chli M., & Siegwart R. (2013). A Robust and Modular Multi-sensor Fusion Approach Applied to MAV Navigation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November, 2013, 3923–3929.
88.    Ma H., Zhao Q., Verhagen S., Psychas D., & Liu X. (2020). Assessing the Performance of Multi-GNSS PPP-RTK in the Local Area. Remote Sensing, 12, 3343. https://doi.org/10.3390/rs12203343
89.    Ma H., Psychas D., Xing, X., Zhao, Q., & Liu, X. (2021). Influence of the inhomogenous troposphere on gnss positioning and integer ambiguity resolution. Advances in Space Research, 67(2),1914-1928.
90.    Mc Graw G., & Murphy, T. (2001). Safety of Life Considerations for GPS Modernization Architectures. In Proceedings of the 14th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2001), Salt Lake City, 632 – 640.
91.    Martell H. (2009). Tightly coupled processing of precise point position (PPP) and ins data. In: Proceedings of the 22nd international technical meeting of the satellite division of the institute of navigation (ION GNSS 2009), Savannah, GA, 22–25 September, 2009, 1898–1905.
92.    Mascaro R., Teixeira L., Hinzmann T., Siegwart R, & Chli M. (2018). GOMSF: Graph-Optimization based Multi-Sensor Fusion for robust UAV pose estimation. In: IEEE international conference on robotics and automation (ICRA), Brisbane, Australia, 21–25 May, 2018, 1421–1428.
93.    Miguel M. Romay Merino, María D. (2012) Integrity for Advanced Precise Positioning Applications. GMV.
94.    Montenbruck O., Steigenberger P., Khachikyan R., Weber G., Langley R.B., Mervart L., & Hugentobler U. (2014). IGS-MGEX: preparing the ground for multi-constellation GNSS science. Inside GNSS, 9(1):42–49.
95.    Montenbruck O., Steigenberger P., Prange L., Deng Z., Zhao Q., Perosanz F., Romero I., Noll C., Stürze A., Weber G., Schmid R., Macleod K., & Schaer S. (2017). The multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS) - Achievements, Prospects and Challenges. Advances in Space Research, 59: 1671-1697. https://doi.org/10.1016/j.asr.2017.01.011
96.    Nadarajah N., Khodabandeh A., Wang K., Choudhury M., & Teunissen P.J.G. (2018). Multi-GNSS PPP-RTK: From Large- to Small-Scale Networks. Sensors, 18(4), 1078, https://doi.org/10.3390/s18041078
97.    Navarro Madrid PF., Laínez Samper MD., & Rmay Merino MM. (2015). New Approach for Integrity Bounds Computation Applied to Advanced Precise Positioning Applications. Proceedings of the 28th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2015), Tampa, Florida, September 2015, pp. 2821-2834.
98.    Odijk D., Teunissen PJG, Zhang B. (2012) Single-frequency integer ambiguity resolution enabled GPS precise point positioning. Journal of surveying engineering, 138(4): 193-202.
99.    Odijk D., Teunissen PJG., Khodabandeh A. (2014) Single-frequency PPP-RTK: theory and experimental results. Earth on the edge: Science for a sustainable planet. Springer, Berlin, Heidelberg: 571-578.
100. Odijk D., Zhang B., & Teunissen PJG. (2015). Multi-GNSS PPP and PPP-RTK: Some GPS+BDS Results in Australia. In: China Satellite Navigation Conference (CSNC) 2015 Proceedings,Xian, China, 13-15 May, 2015, 341:613-623. https://doi.org/10.1007/978-3-662-46635-3_52
101. Odijk D., Zhang B., Khodabandeh A., Odolinski R., & Teunissen PJG.  (2016). On the estimability of parameters in undifferenced, uncombined GNSS network and PPP-RTK user models by means of S-system theory. Journal of Geodesy, 90, 15–44. https://doi.org/10.1007/s00190-015-0854-9
102. Odolinski R., & Teunissen PJG. (2017). On the performance of a low-cost single-frequency GPS+BDS RTK positioning model. In: Proceedings of the 2017 international technical meeting of the institute of navigation, pp. 745-753.
103. Oliveira PS., Morel L., Fund F., Legros R., Monico JFG., Durand S., & Durand F.(2017). Modeling tropospheric wet delays with dense and sparse network configurations for PPP-RTK. GPS Solutions, 21, 237–250. https://doi.org/10.1007/s10291-016-0518-0
104. Parkinson B. & Axelrad P. (1988). Autonomous GPS Integrity Monitoring Using the Pseudorange Residual. Journal of the Institute of Navigation, 35: 255-274.
105. Pervan B., Pullen S. & Christie J. (1998). A Multiple Hypothesis Approach to Satellite Navigation Integrity. Journal of Navigation. 45(1): 61-71.

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存