查看原文
其他

用户画像,该怎么分析?

The following article is from 接地气学堂 Author 陈老师


【与数据同行】已开通综合、数据仓库、数据分析、产品经理、数据治理及机器学习六大专业群,加微信号frank61822702 为好友后入群。新开招聘交流群,请关注【与数据同行】公众号,后台回复“招聘”后获得入群方法。


正文开始

有同学问:陈老师,我领导让我做用户画像分析,可是我做了一大堆数据,却被批:也没分析什么东西啊?该咋办?今天系统解答一下。

 
用户画像分析的错误姿势
 
1.限于数据,动不敢动。一提用户画像,很多人脑海里立刻蹦出了性别,年龄,地域,爱好等基础信息字段,然后大呼:我们好像没这个数据,于是放弃分析了。可实际想想,知道男性占比真的有那么大意义?知道男性占比65%还是60%真的对业务有帮助?不一定的,贴用户标签有很多方式,不要限于一些难采集的基础信息。

  

2.罗列数据,没有思路。很多人一听到用户画像分析,本能的就开始把数据库里的用户标签往外搬,在报告里码上:
  • 男女比例3:2
  • 20-25岁占比40%
  • 30%的人在最近一周内登录
  • 70%的人没有二次购买
……

至于摆完这些数据干什么,完全没有考虑过。这种分析结果,当然让人看完一头雾水。迷茫的发问:“所以呢?又怎样呢?”

 

3.无限拆分,没有逻辑。很多人一听到类似“流失用户画像分析”一类相对具体的分析题目,就开始无限拆解数据。分性别,年龄,地域,设备,注册时间,来源渠道,购买金额……拆了几十个维度看流失率。最后,只看到有的维度差5%,有的差10%,当然没有最后结论啦,越看越糊涂。

 

以上问题,都是太过纠结于用户画像四个字,忽视了分析两个字导致的。用户画像作为一个基础数据体系,本身并没有分析功能。单纯的罗列用户标签或者拆解用户指标,也起不到分析作用。像利用好用户画像,还得按分析套路一步步来。

  
第一步:转化商业问题
 
用户画像分析,本质上是从用户的角度思考问题。举个简单的例子,比如新上市产品销售未达预期,我们既可以从产品管理的角度来思考问题,也能从用户角度来思考问题。同样一个问题,会有两种思考方式(如下图所示):

因此,简单的列出一堆用户指标(性别,年龄,地域,购买产品,登录次数……)是没啥用处的。用户画像只是分析的一个工具,和其他分析一样,也要先考虑:我要解决的实际问题到底是什么。想清楚了,再把问题转化成用户相关的问题,就能继续使用用户画像分析方法了。
 
需要注意的是,商业问题是很复杂的。往往一个问题,可能与若干用户群体、若干用户行为有关。比如上边的例子,就至少和三个用户群体(潜在用户、流失用户、存量用户)涉及到用户态度、信息接收、购买流程、使用体验等多方面。因此更得分门别类,把分析线索和分析逻辑理清楚,找到对应的数据。不然一锅炖,光列性别,年龄,地域,也解释不了任何问题。这就涉及下两部工作。

 

第二步:宏观假设验证

转化完问题后,先宏观上对假设进行检验非常重要,能有效避免无限拆解的错误。如果大方向都不成立,细节更不用看了。还是新产品卖不动的问题,如果要从大方向验证,可以简单如下进行:

 


  • 如果怀疑大环境不好,那应该全品类受影响。

  • 如果怀疑竞品竞争力强,那应该竞品直接影响到我们产品

  • 如果怀疑运作太差,那本次商品转化漏斗上势必有一环掉链子

  • 如果以上有假设验证,可以进一步深入分析

  • 如果以上假设都不成立,可能还需要新假设

 

总之,先进行大方向检验,可以有效缩小怀疑范围。怀疑范围越小,后续对用户分析可以越精确。同时,当数据不足的时候,怀疑范围越小,越能够集中力量收集数据,改善数据质量,做出有精度的分析。用户的分类维度可以有几百个之多,如果不加筛选的做拆解对比,很有可能在数十个维度上都有差异,最后完全读不懂数据。在拆解以前聚焦假设,非常重要。

 

第三步:构建分析逻辑
 
宏观验证以后,可以基于已验证的结论,构建更细致的分析逻辑。在这个阶段,实际上已经把原本宏大的问题,聚焦为一个个小问题,比如:
 

举一个具体场景:

已验证:我们却受竞品影响

  • 子问题1:目标用户的需求是什么?

  • 子问题2:目标用户对竞品体验如何?哪些需求点最被触动?

  • 子问题3:目标用户对本品体验如何?哪些差距是致命伤?

  • 子问题4:竞品/本品在硬功能,软宣传上差距如何?


这四个子问题,都可以通过对用户需求与行为的深入挖掘得到答案,下一步可以继续深入了。须注意的是,这一部分的分析需要大量用户态度、潜在用户、竞品用户的研究,单靠内部数据不能完成,必须通过外部调研
 
再看另一个场景:
已验证:本次新品上市操盘却有问题
  • 子问题1:问题出在预热、发布、上市、推广哪个阶段

  • 子问题2:上市阶段大量用户未能响应,广告投放出了什么问题

  • 子问题3:推广阶段销量未能引爆,为啥没有激发核心用户需求

  • ……(可进一步问太多,简单举例如上)


这些问题,可以分两方面解决

一方面,通过对不同类型用户对比,如

  • 核心/普通

  • 购买/未购

  • 触达/未触达


用户进行对比,找到投放、奖励活动、购买品类、金额等细节上差异,从而调整投放、营销、产品补货等业务。

 

另一方面,通过对核心用户画像,让业务更看清楚,真正爱买的人

  • 来自哪个渠道

  • 通过什么主题

  • 需要什么样优惠

  • 在什么时机下单


让业务更多的去抓这些核心用户,而且改善后续表现。

 
需要注意的是,这一部分用户来源、信息投放响应,购买行为,主题阅读,完全可以通过内部系统记录。即使不知道他是男是女,我们也能通过投广告,发内容,做优惠吸引到他们
  
第四步:获取用户数据
 
在上一步我们已经看到,用户画像分析如果真的想深入用户,就得依赖多种数据来源。很有可能是内外部数据双管齐下的。考虑到内部数据可能采集不全,外部数据存在抽样误差问题,在使用数据上就得有取舍,有重点。这也是为啥前边一直强调逐步验证,缩小假设的原因。聚焦了才好采集数据。
 

一般来说,
  • 越是偏态度、体验、情感类问题,越倾向于用调研的方法

  • 越是偏行为、消费、互动类问题,越倾向于内部的数据分析

  • 如果想了解竞品,就拉竞品用户调研,或针对竞品网店爬虫


在传统意义上,做市场调研和做数据分析的,都有各自用户画像的定义、做法、输出产物。站在实际对企业有用的角度,当然是越多越好。不过,随着爬虫,NLP,埋点越做越深入,在有技术支持的情况下,这些年对系统采集数据的利用度是越来越高的。所以在有条件的情况下,还是尽量推动内部数据丰富。不然事事依赖调研,数据没有积累,以后也难做。

 

第五步:归纳分析结论
 
如果以上几步做好了,在最后推分析结论就是水到渠成的事,完全不费力气。实际上,用户画像分析最大的问题都是出在前五步的。缺少假设方向,缺少数据准备,缺少分析逻辑,单纯罗列数据,无限制拆解,到最后自然面对一堆零碎的数据纠结:“男女比例3:2又怎样呢???”
 
当然用户画像有其他很多用处,比如支持新品开发,支持推荐系统,支持自动营销系统,支持投放系统等等,作分析只是它一小块作用。所以想做好分析,还是要多学习分析方法,操练分析逻辑哦。不考虑具体问题场景,单纯的问:一般的用户画像怎么做。得到的也是来自算法、调研、数仓、分析各个岗位千奇百怪的回答,自然没有分析思路了



数据分析报告,就该这么写

数据分析真的能驱动用户快速增长么?

数据分析的基本方法论

一份完整的数据分析师成长书单

数据分析师的未来

超级菜鸟如何入门数据分析?

数据分析的套路:经典的6大类分析方法

如何才能成为顶级的数据分析师?

数据分析的道与术

 数据分析人的职场天花板

一次客户细分的实践

经验,套路还是逻辑?从我的一次数据分析经历中能得到什么?

为什么我提交的数据分析报告总是被领导K?

大数据也是个江湖:关于腾讯大数据“购买iPhone人群普遍无房无车学历低”的一地鸡毛

浙江移动发布手机终端大数据分析报告

为什么客户画像这么难?

为什么有些人用3年的时间获得了 你12年的数据分析经验

数据分析师的自我修养

经营分析师如何进一步提升自己的境界

: . Video Mini Program Like ,轻点两下取消赞 Wow ,轻点两下取消在看

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存