查看原文
其他

企业IT规划|数据治理该归哪个部门管?

The following article is from 陈果George Author GEORGE陈果


傅一平评语:


这篇文章提出了一个观点,因为不同行业对于数据应用,尤其是重要度和优先级最高的数据应用场景差别很大,数据治理的主要动力不同,所以不存在一种标准的数据治理模式,即什么组织对什么事情承担什么责任?即行业不同会导致数据治理的归口管理部门不同。


比如银行由于监管需要,天然就要有统一的数据上报部门,因此管理信息部就成为了数据治理部门;制造业强调全流程效率,而IT部门由于承担了各个跨职能系统建设,因此往往成为了制造业的数据治理部门;消费品和零售行业最核心的数据是客户及产品数据,因此甚至会有营销部门负责公司的数据治理。


这篇文章非常务实,强调要因地制宜,这是很好的,但我有一些疑问,也表达下我的看法:


第一、据我所知,不少银行的数字化水平相当高,营销和服务的诉求不要太多,对外部的数据诉求也很大,其数据治理组织不应仅限于管管报表啊,是否有更高层次的数据治理组织在承担这些新的使命?也许我们的资料或印象都太老了,希望有更多的案例来说明。


第二、现在的华为数据管理部不能称其为纯粹的IT部门,华为的主要IT部门分散在各个事业部,华为数据管理部是做全局统筹协调的,不是系统的承建方,更不可能去做ERP系统,这个数据治理部门也不是自然而然产生的,它甚至是个异类,大多数制造企业根本还没到这个阶段,华为也代表不了制造业数据治理的基本面。


第三、数据治理现在这个词被用烂了,我强烈建议回归数据治理的狭义定义,更多是指文化、组织、机制、流程的内容,它是对数据管理活动的控制,它是超越业务的存在,是对数据管理模式的抽象,比如华为抽象出了公司数据责任人和领域数据责任人这种组织形式,而这个恰恰是可以全行业通用的,也许我们不能说数据治理没有全行业标准的治理模式,我们只能说,数据治理不同阶段需要不同的治理模式,但在同一个阶段,也许很多模式都可以复用。



正文开始


我前段时间在《大多数企业数据治理方案都难以收到实效》文中,谈到了我对最近几年开始热门起来的“数据治理”这个话题的看法。在管理信息系统(MIS)的理论体系里,“数据治理”、“数据质量”这两个名词并不是从业务系统设计而来的,而是用来评价数据仓库里的数据的,例如MIS的经典教材就是这样定义的:

当运用数据进行分析时,发现数据有问题,再追根溯源到数据生成源头去。MIS理论说的“数据质量”指的是数仓里的数据是不是健全、完整。市面上的“数据治理软件”的数据质量分析,都是对数仓内的数据本身是否符合预定标准的分析,例如字段长度和类型是不是符合要求、是不是空值、是不是有错误的重复、业务主键是否唯一等等,也称为“数据智能”(data intellignce),但是,数据的业务意义准确性,却是无法通过这种分析方式来判断的。


 所以我认为现在不少数据专家谈“数据治理”,往往将“面向分析的数据治理”和

“面向业务的数据治理”两个不同的概念混淆起来,而此“数据治理”非彼“数据治理”,前者解决的是数据有没有的问题,而后者解决的是数据对不对的问题。同时,市面上的“数据治理平台”软件也不能完全解决企业真正存在的数据质量问题,这种工具只是数仓管理工具之一。

 

如果从业务角度来看数据治理,按照我对中国企业信息化架构的理解,不同行业对于数据应用,尤其是重要度和优先级最高的数据,应用场景差别很大,数据治理的主要动力不同,所以不存在一种标准的数据治理模式——如果我们回到“治理”(governance)这个词的本意,即什么组织对什么事情承担什么责任?

 

金融机构(例如银行、保险公司、证券公司等)的数据治理动力主要来自这样几个方面:1,对外:监管报送和合规要求,尤其是中国银行保险监督管理委员会《关于印发银行业金融机构数据治理指引的通知》(银保监发〔2018〕22号)提出了具体的要求,其出发点往往跟金融监管相关,例如“陈果究竟在我们银行有多少个账户?”这类反洗钱等应用场景。2,对内:金融机构可能是我见过的在中国最在乎算业绩、算分润的行业,由于现在金融机构的产品、客户分群、渠道等越来越复杂,而且各种叠加、交叉,因而对数据质量要求很高。

 

中国的四大行是国内金融机构的管理示范,而四大行的数据治理模式是具备传统沿袭的,例如某四大行的数据归口部门是“管理信息部”,其职能描述是:

主管全行的业务统计和信息工作,负责汇总和编制各类业务统计报表,对全行经营管理状况进行综合分析评价,组织调查研究,在国际互联网发布信息,搜集处理各类经济、金融信息。主管总行办公自动化工作。

四大行某行管理制度的公开材料

这个数据管理的牵头部门和办公室、计划财务部、资金运营部等平行,同时也是“信息科技部”平行。因而,国内的其他股份制银行、农商社、保险公司等,或多或少地都采用了这种管理模式。


而制造业的数据治理模式则和金融机构完全不同,制造业最核心的数据是产品数据,数据治理回答的主要问题是产品数据在研产供销价值链全环节上——涉及到诸如供应链计划、业财一体化、成本利润核算等管理课题——如何保证一致性和准确性,例如我在《华为你学不会,包括数据管理》写过的:“研发的图纸上的过滤网,和采购的尼龙布是不是一个东西?”

 

从中国企业的实际情况来看,制造业企业的信息技术部门比金融企业的信息技术部门承担了更多的全公司的流程、数据协调的职能,它集中承担了企业级的各个跨职能系统建设,尤其是ERP核心系统,以及PLM、HCM、CRM、SCM等系统,制造业企业里也不存在金融企业那种因为监管等原因所先天存在的“管理信息部”,因而在制造业企业里,数据治理的归口责任多存在于信息技术部门内部。目前大家公认国内数据治理最佳实践的华为有关管理,就是这种模式的典型;而围绕SAP系统实施的主数据管理系统,也大多支持这种数据治理模式。


其他行业还具有其他不同的数据治理模式:例如消费品和零售行业,最核心的数据是客户及产品数据,主要的数据应用场景是围绕产品的营销分析(产品定位、销量、营销策略有效性等)或者对顾客的营销分析(圈人精准营销等),因而,我曾经见过国内某千亿级大型快消企业的数据牵头部门挂在营销体系之下,由营销口的首席数字官(CDO)来分管全企业数据治理,而非IT部门管数据,企业的各种管理报表口径由营销部门下的“数据管理部”来协调。


又例如某些大型企业集团总部,由于存在全集团的信息汇总、经营报表制作,以及集团级的数据资产管理,在集团总部存在着数据管理职责;由于集团总部机关并不直接参与各下属企业的业务操作,这种情况反而是我本文初说的“面向分析的数据治理”模式为主了,数据治理作为一种职责围绕着数仓管理的信息技术部门而设置,通常和信息部职责合并在一起。

 

总之,企业的数据治理不存在一种“one mode fits all”的模式,不同行业差别很大,要结合下面这类治理原则,从企业信息系统基本原理、行业惯例、企业业务重点等角度去综合考虑。

 

来源:BCG Platinion数据治理方法论

 



    华为董事陶景文:任何不涉及流程重构的数字化转型,都是在装样子!

    数字化转型:关于建立部门数据共享机制

    终于有人把“元宇宙”说清楚了!

    清华大学126页PPT:2021元宇宙发展研究报告(附下载)

    大数据治理平台建设方案(90页),这份材料我给满分!

    102页 | 华为《数字化转型,从战略到执行》报告(附PPT下载)

    自底向上,数字化转型的实践和思考 by 傅一平

    193页PPT读懂《数字化转型方法论》,强烈建议收藏!

    数字孪生:从价值角度理解概念

    企业数字化转型:IT部门的未来!

    如何快速搞懂数字孪生的本质?by 傅一平


    点击左下角“阅读原文”查看更多精彩文章,公众号推送规则变了,如果您想及时收到推送,麻烦右下角点个在看或者把本号置顶 

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存