查看原文
其他

深入理解 Linux CPU的上下文切换

混说Linux 2022-11-19
点击上方蓝色“混说Linux”,选择“设为星标
第一时间看干货文章



 1


我们都知道 Linux 是一个多任务操作系统,它支持的任务同时运行的数量远远大于 CPU 的数量。当然,这些任务实际上并不是同时运行的(Single CPU),而是因为系统在短时间内将 CPU 轮流分配给任务,造成了多个任务同时运行的假象。

 

CPU 上下文(CPU Context)


在每个任务运行之前,CPU 需要知道在哪里加载和启动任务。这意味着系统需要提前帮助设置 CPU 寄存器程序计数器


CPU 寄存器是内置于 CPU 中的小型但速度极快的内存。程序计数器用于存储 CPU 正在执行的或下一条要执行指令的位置。

它们都是 CPU 在运行任何任务之前必须依赖的依赖环境,因此也被称为 “CPU 上下文”。如下图所示:


知道了 CPU 上下文是什么,我想你理解 CPU 上下文切换就很容易了。“CPU上下文切换”指的是先保存上一个任务的 CPU 上下文(CPU寄存器和程序计数器),然后将新任务的上下文加载到这些寄存器和程序计数器中,最后跳转到程序计数器。


这些保存的上下文存储在系统内核中,并在重新安排任务执行时再次加载。这确保了任务的原始状态不受影响,并且任务似乎在持续运行。

 

CPU 上下文切换的类型

你可能会说 CPU 上下文切换无非就是更新 CPU 寄存器和程序计数器值,而这些寄存器是为了快速运行任务而设计的,那为什么会影响 CPU 性能呢?


在回答这个问题之前,请问,你有没有想过这些“任务”是什么?你可能会说一个任务就是一个进程或者一个线程。是的,进程和线程正是最常见的任务,但除此之外,还有其他类型的任务。


忘了硬件中断也是一个常见的任务,硬件触发信号,会引起中断处理程序的调用。


因此,CPU 上下文切换至少有三种不同的类型:

    • 进程上下文切换

    • 线程上下文切换

    • 中断上下文切换

让我们一一来看看。

 

进程上下文切换


Linux 按照特权级别将进程的运行空间划分为内核空间和用户空间,分别对应下图中 Ring 0 和 Ring 3 的 CPU 特权级别的 。

    • 内核空间(Ring 0)拥有最高权限,可以直接访问所有资源。

    • 用户空间(Ring 3)只能访问受限资源,不能直接访问内存等硬件设备,它必须通过系统调用陷入(trapped)内核中才能访问这些特权资源。


从另一个角度看,一个进程既可以在用户空间也可以在内核空间运行。当一个进程在用户空间运行时,称为该进程的用户态,当它落入内核空间时,称为该进程的内核态。


从用户态到内核态的转换需要通过系统调用来完成。例如,当我们查看一个文件的内容时,我们需要以下系统调用:

  • open():打开文件

  • read():读取文件的内容

  • write():将文件的内容写入到输出文件(包括标准输出)

  • close():关闭文件

那么在上述系统调用过程中是否会发生 CPU 上下文切换呢?当然是的。


这需要先保存 CPU 寄存器中原来的用户态指令的位置。接下来,为了执行内核态的代码,需要将 CPU 寄存器更新到内核态指令的新位置。最后是跳转到内核态运行内核任务。


那么系统调用结束后,CPU 寄存器需要恢复原来保存的用户状态,然后切换到用户空间继续运行进程。

因此,在一次系统调用的过程中,实际上有两次 CPU 上下文切换。

但需要指出的是,系统调用进程不会涉及进程切换,也不会涉及虚拟内存等系统资源切换。这与我们通常所说的“进程上下文切换”不同。进程上下文切换是指从一个进程切换到另一个进程,而系统调用期间始终运行同一个进程。


系统调用过程通常被称为特权模式切换,而不是上下文切换。但实际上,在系统调用过程中,CPU 的上下文切换也是不可避免的。 


进程上下文切换 vs 系统调用


那么进程上下文切换和系统调用有什么区别呢?首先,进程是由内核管理的,进程切换只能发生在内核态。因此,进程上下文不仅包括虚拟内存、栈和全局变量等用户空间资源,还包括内核栈和寄存器等内核空间的状态。


所以进程上下文切换比系统调用要多出一步:

在保存当前进程的内核状态和 CPU 寄存器之前,需要保存进程的虚拟内存、栈等;并加载下一个进程的内核状态。

根据 Tsuna 的测试报告,每次上下文切换需要几十纳秒至微秒的 CPU 时间。这个时间是相当可观的,尤其是在大量进程上下文切换的情况下,很容易导致 CPU 花费大量时间来保存和恢复寄存器、内核栈、虚拟内存等资源。这正是我们在上一篇文章中谈到的,一个导致平均负载上升的重要因素。


那么,该进程何时会被调度/切换到在 CPU 上运行?其实有很多场景,下面我为大家总结一下:

    • 当一个进程的 CPU 时间片用完时,它会被系统挂起,并切换到其它等待 CPU 运行的进程。

    • 当系统资源不足(如内存不足)时,直到资源充足之前,进程无法运行。此时进程也会被挂起,系统会调度其它进程运行。

    • 当一个进程通过 sleep 函数自动挂起自己时,自然会被重新调度。

    • 当优先级较高的进程运行时,为了保证高优先级进程的运行,当前进程会被高优先级进程挂起运行

    • 当发生硬件中断时,CPU 上的进程会被中断挂起,转而执行内核中的中断服务程序。

了解这些场景是非常有必要的,因为一旦上下文切换出现性能问题,它们就是幕后杀手。

 

线程上下文切换


线程和进程最大的区别在于,线程是任务调度的基本单位,而进程是资源获取的基本单位。


说白了,内核中所谓的任务调度,实际的调度对象是线程;而进程只为线程提供虚拟内存和全局变量等资源。所以,对于线程和进程,我们可以这样理解:

    • 当一个进程只有一个线程时,可以认为一个进程等于一个线程。

    • 当一个进程有多个线程时,这些线程共享相同的资源,例如虚拟内存和全局变量。

    • 此外,线程也有自己的私有数据,比如栈和寄存器,在上下文切换时也需要保存。

这样,线程的上下文切换其实可以分为两种情况

    • 首先,前后两个线程属于不同的进程。此时,由于资源不共享,切换过程与进程上下文切换相同。

    • 其次,前后两个线程属于同一个进程。此时,由于虚拟内存是共享的,所以切换时虚拟内存的资源保持不变,只需要切换线程的私有数据、寄存器等未共享的数据。

显然,同一个进程内的线程切换比切换多个进程消耗的资源要少。这也是多线程替代多进程的优势。

 

中断上下文切换

除了前面两种上下文切换之外,还有另外一种场景也输出 CPU 上下文切换的,那就是中断。


为了快速响应事件,硬件中断会中断正常的调度和执行过程,进而调用中断处理程序。


在中断其他进程时,需要保存进程的当前状态,以便中断后进程仍能从原始状态恢复。


与进程上下文不同,中断上下文切换不涉及进程的用户态。因此,即使中断进程中断了处于用户态的进程,也不需要保存和恢复进程的虚拟内存、全局变量等用户态资源。


另外,和进程上下文切换一样,中断上下文切换也会消耗 CPU。过多的切换次数会消耗大量的 CPU 资源,甚至严重降低系统的整体性能。因此,当您发现中断过多时,需要注意排查它是否会对您的系统造成严重的性能问题。


问题排查

工具

vmstat ——是一个常用的系统性能分析工具,主要用来分析系统的内存使用情况,也常用来分析CPU上下文切换和中断的次数。


pidstat ——vmstat只给出了系统总体的上下文切换情况,要想查看每个进程的详细情况,就需要使用pidstat,加上-w,可以查看每个进程上下文切换的情况。


/proc/interrupts——/proc实际上是linux的虚拟文件系统用于内核空间和用户空间的通信,/proc/interrupts是这种通信机制的一部分,提供了一个只读的中断使用情况。


perf stat 可以统计很多和 CPU 相关核心数据,比如 cache' miss,上下文切换,CPI 等。

实战

vmstat:

# 每隔1秒输出1组数据(需要Ctrl+C才结束)
$ vmstat 1
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
 r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa st
 6  0      0 6487428 118240 1292772    0    0     0     0 9019 1398830 16 84  0  0  0
 8  0      0 6487428 118240 1292772    0    0     0     0 10191 1392312 16 84  0  0  0
cs(context switch)是每秒上下文切换的次数
in   (interrupt)每秒中断的次数
r    (Running or Runnnable)是就绪队列的长度,也就是正在运行和等待CPU的进程数。
b  (Blocked) 则是处于不可中断睡眠状态的进程数
分析:
查看cs大小(实验时cs骤升到百万)
同时注意r列(实验时为8),机器cpu为1,远远超过1,必然会有大量的CPU竞争
us和sy列,计算cpu使用率总和(实验加起来快100%,其中sy高达84%,说明cpu主要被内核占用)
in列,查看大小(实验中骤升到一万,说明中断处理也是潜在的问题)
综合可知,系统的就需队列过长,也就是正在运行和等待CPU的进程数过多,导致了大量的上下文切换,而上下文切换导致了cpu占用率高


pidstat查看进程上下文切换情况:

# 每隔1秒输出1组数据(需要 Ctrl+C 才结束)
# -w参数表示输出进程切换指标,而-u参数则表示输出CPU使用指标
$ pidstat -w -u 1
08:06:33      UID       PID    %usr %system  %guest   %wait    %CPU   CPU  Command
08:06:34        0     10488   30.00  100.00    0.00    0.00  100.00     0  sysbench
08:06:34        0     26326    0.00    1.00    0.00    0.00    1.00     0  kworker/u4:2
 
08:06:33      UID       PID   cswch/s nvcswch/s  Command
08:06:34        0         8     11.00      0.00  rcu_sched
08:06:34        0        16      1.00      0.00  ksoftirqd/1
08:06:34        0       471      1.00      0.00  hv_balloon
08:06:34        0      1230      1.00      0.00  iscsid
08:06:34        0      4089      1.00      0.00  kworker/1:5
08:06:34        0      4333      1.00      0.00  kworker/0:3
08:06:34        0     10499      1.00    224.00  pidstat
08:06:34        0     26326    236.00      0.00  kworker/u4:2
08:06:34     1000     26784    223.00      0.00  sshd
cswch  表示每秒自愿上下文切换的次数,是指进程无法获取所需资源,导致的上下文切换,比如说,I/O,内存等系统资源不足时,就会发生自愿上下文切换。
nvcswch 表示每秒非自愿上下文切换的次数,则是指进程由于时间片已到等原因,被系统强制调度,进而发生的上下文切换。
分析:
pidstat查看果然是sysbench导致了cpu达到100%,但上下文切换来自其他进程,包括非自愿上下文切换最高的pidstat,以及自愿上下文切换最高的kworker和sshd
但pidtstat输出的上下文切换次数加起来才几百和vmstat的百万明显小很多,现在vmstat输出的是线程,而pidstat加上-t后才输出线程指标
 
# 每隔1秒输出一组数据(需要 Ctrl+C 才结束)
# -wt 参数表示输出线程的上下文切换指标
$ pidstat -wt 1
08:14:05      UID      TGID       TID   cswch/s nvcswch/s  Command
...
08:14:05        0     10551         -      6.00      0.00  sysbench
08:14:05        0         -     10551      6.00      0.00  |__sysbench
08:14:05        0         -     10552  18911.00 103740.00  |__sysbench
08:14:05        0         -     10553  18915.00 100955.00  |__sysbench
08:14:05        0         -     10554  18827.00 103954.00  |__sysbench
...
pidstat子线程加一起就差不多百万了。


看中断——可排查是哪些中断引起的(变化速度最快的):

# -d 参数表示高亮显示变化的区域
$ watch -d cat /proc/interrupts
           CPU0       CPU1
...
RES:    2450431    5279697   Rescheduling interrupts
...


观察一段时间后,可以发现变化最快的是重新调度中断(RES, REScheduling interrupt)。这种中断类型表明处于空闲状态的 CPU 被唤醒以调度新的任务运行。所以这里的中断增加是因为太多的任务调度问题,这和前面上下文切换次数的分析结果是一致的。


现在回到最初的问题,每秒多少次上下文切换是正常的?

这个值实际上取决于系统本身的 CPU 性能。如果系统的上下文切换次数比较稳定的话,几百到一万应该是正常的。但是,当上下文切换次数超过 10000,或者切换次数快速增加时,很可能是出现了性能问题。


perf stat 可以排查系统上下文切换速率变化:


可以观察 context-switcehes 数据的变化,有没有突增,可以发现一些异常想象。

场景
    • 根据调度策略,将 CPU 时间划片为对应的时间片,当时间片耗尽,当前进程必须挂起。

    • 资源不足的,在获取到足够资源之前进程挂起。

    • 进程 sleep 挂起进程。

    • 高优先级进程导致当前进度挂起。

    • 硬件中断,导致当前进程挂起。


小结
    • CPU 上下文切换,是保证 Linux 系统正常工作的核心功能之一,一般情况下不需要我们特别关注。

    • 但过多的上下文切换,会把 CPU 时间消耗在寄存器,内核栈以及虚拟内存等数据的保存和恢复上,从而缩短进程真正运行的时间,导致系统的整体性能大幅下降。

    • 自愿上下文切换变多了,说明进程都在等待资源,有可能发生了 I/O 等其他问题。

    • 非自愿上下文切换变多了,说明进程都在被强制调度,也就是都在争抢 CPU,说明 CPU 的确成了瓶颈。

    • 中断次数变多了,说明 CPU 被中断处理程序占用,还需要通过查看 /proc/interrupts 文件来分析具体的中断类型。


考: https://medium.com/geekculture/linux-cpu-context-switch-deep-dive-764bfdae4f01






关注微信公众号『混说Linux』,后台点击 关于混说 即可添加作者微信。

往期推荐

ARM Cortex-M内核复位启动过程分析

还不知道UART、I2C、SPI协议什么时候用?一文带你彻底搞懂

介绍一个非常有用的Linux命令,赶快用起来!

bug是如何产生的?


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存