在线阅读!!机器学习数学精华:高等数学
机器学习,需要一定的数学基础,需要掌握的数学基础知识特别多,如果从头到尾开始学,估计大部分人来不及,我建议先学习最基础的数学知识,基础知识可以分为高等数学、线性代数、概率论与数理统计三部分,我整理了相关数学基础资料:
源文件下载:
https://github.com/fengdu78/Data-Science-Notes/tree/master/0.math
内容简介
一、斯坦福大学CS229数学基础
这是斯坦福大学 CS 229 机器学习课程的基础材料,是斯坦福各大人工智能课程的数学基础,对人工智能课程做了优化,强烈推荐!!
我们对原始教程进行了翻译,翻译版本做成了在线阅读版本。
二、国内大学的数学基础教材精华
这个是我考研考博时候整理的中文教材的资料,分为高等数学、线性代数、概率论与数理统计三部分,我把和机器学习相关的数学知识进行了整理,进行公布。
本文是高等数学部分,建议收藏慢慢看。
高等数学
1.导数定义:
导数和微分的概念
(1)
或者:
(2)
2.左右导数导数的几何意义和物理意义
函数在处的左、右导数分别定义为:
左导数:
右导数:
3.函数的可导性与连续性之间的关系
Th1: 函数在处可微在处可导
Th2: 若函数在点处可导,则在点处连续,反之则不成立。即函数连续不一定可导。
Th3: 存在
4.平面曲线的切线和法线
切线方程 :
法线方程:
5.四则运算法则
设函数]在点可导则
(1)
(2)
(3)
6.基本导数与微分表
(1) (常数)
(2) (为实数)
(3) 特例:
(4)
特例:
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
7.复合函数,反函数,隐函数以及参数方程所确定的函数的微分法
(1) 反函数的运算法则: 设在点的某邻域内单调连续,在点处可导且,则其反函数在点所对应的处可导,并且有
(2) 复合函数的运算法则:若在点可导,而在对应点()可导,则复合函数在点可导,且
(3) 隐函数导数的求法一般有三种方法:
1)方程两边对求导,要记住是的函数,则的函数是的复合函数.例如,,,等均是的复合函数. 对求导应按复合函数连锁法则做.
2)公式法.由知 ,其中,, 分别表示对和的偏导数
3)利用微分形式不变性
8.常用高阶导数公式
(1)
(2)
(3)
(4)
(5)
(6)莱布尼兹公式:若均阶可导,则 ,其中,
9.微分中值定理,泰勒公式
Th1:(费马定理)
若函数满足条件:
(1)函数在的某邻域内有定义,并且在此邻域内恒有 或,
(2) 在处可导,则有
Th2:(罗尔定理)
设函数满足条件:
(1)在闭区间上连续;
(2)在内可导;
(3);
则在内一存在个,使
Th3: (拉格朗日中值定理)
设函数满足条件:
(1)在上连续;
(2)在内可导;
则在内一存在个,使
Th4: (柯西中值定理)
设函数,满足条件: (1) 在上连续;
(2) 在内可导且,均存在,且
则在内存在一个,使
10.洛必达法则
法则 Ⅰ (型)
设函数
满足条件:
;
在的邻域内可导,(在处可除外)且;
存在(或)。
则: 。 法则 (型)
设函数
满足条件:
;
存在一个,当时,可导,且;存在(或)。
则:
法则 Ⅱ(型)
设函数满足条件: ;
在 的邻域内可导(在处可除外)且;存在(或)。
则
同理法则(型)仿法则可写出。
11.泰勒公式
设函数在点处的某邻域内具有阶导数,则对该邻域内异于的任意点,在与之间至少存在 一个,使得:
其中 称为在点处的阶泰勒余项。
令,则阶泰勒公式 ……(1)
其中 ,在 0 与之间.(1)式称为麦克劳林公式
常用五种函数在处的泰勒公式
(1)
或
(2)
或
(3)
或
(4)
或
(5)
或
12.函数单调性的判断
Th1:
设函数在区间内可导,如果对,都有(或),则函数在内是单调增加的(或单调减少)
Th2:
(取极值的必要条件)设函数在处可导,且在处取极值,则。
Th3:
(取极值的第一充分条件)设函数在的某一邻域内可微,且(或在处连续,但不存在。)
(1)若当经过时,由“+”变“-”,则为极大值;
(2)若当经过时,由“-”变“+”,则为极小值;
(3)若经过的两侧不变号,则不是极值。
Th4:
(取极值的第二充分条件)设在点处有,且,则 当时,为极大值; 当时,为极小值。 注:如果,此方法失效。
13.渐近线的求法
(1)水平渐近线 若,或,则
称为函数的水平渐近线。
(2)铅直渐近线 若,或,则
称为的铅直渐近线。
(3)斜渐近线 若,则 称为的斜渐近线。
14.函数凹凸性的判断
Th1: (凹凸性的判别定理)若在 I 上(或),则在 I 上是凸的(或凹的)。
Th2: (拐点的判别定理 1)若在处,(或不存在),当变动经过时,变号,则为拐点。
Th3: (拐点的判别定理 2)设在点的某邻域内有三阶导数,且,,则为拐点。
15.弧微分
16.曲率
曲线在点处的曲率。 对于参数方程。
17.曲率半径
曲线在点处的曲率与曲线在点处的曲率半径有如下关系:。
关于本站
往期精彩回顾