查看原文
其他

复现经典:《统计学习方法》第 3 章 k 近邻法

机器学习初学者 机器学习初学者 2022-05-16

本文是李航老师的《统计学习方法》[1]一书的代码复现。

作者:黄海广[2]

备注:代码都可以在github[3]中下载。

我将陆续将代码发布在公众号“机器学习初学者”,敬请关注。

代码目录

  • 第 1 章 统计学习方法概论
  • 第 2 章 感知机
  • 第 3 章 k 近邻法
  • 第 4 章 朴素贝叶斯
  • 第 5 章 决策树
  • 第 6 章 逻辑斯谛回归
  • 第 7 章 支持向量机
  • 第 8 章 提升方法
  • 第 9 章 EM 算法及其推广
  • 第 10 章 隐马尔可夫模型
  • 第 11 章 条件随机场
  • 第 12 章 监督学习方法总结

代码参考:wzyonggege[4],WenDesi[5],火烫火烫的[6]

第 3 章 k 近邻法

1.近邻法是基本且简单的分类与回归方法。近邻法的基本做法是:对给定的训练实例点和输入实例点,首先确定输入实例点的个最近邻训练实例点,然后利用这个训练实例点的类的多数来预测输入实例点的类。

2.近邻模型对应于基于训练数据集对特征空间的一个划分。近邻法中,当训练集、距离度量、值及分类决策规则确定后,其结果唯一确定。

3.近邻法三要素:距离度量、值的选择和分类决策规则。常用的距离度量是欧氏距离及更一般的pL距离。值小时,近邻模型更复杂;值大时,近邻模型更简单。值的选择反映了对近似误差与估计误差之间的权衡,通常由交叉验证选择最优的

常用的分类决策规则是多数表决,对应于经验风险最小化。

4.近邻法的实现需要考虑如何快速搜索 k 个最近邻点。kd树是一种便于对 k 维空间中的数据进行快速检索的数据结构。kd 树是二叉树,表示对维空间的一个划分,其每个结点对应于维空间划分中的一个超矩形区域。利用kd树可以省去对大部分数据点的搜索, 从而减少搜索的计算量。

距离度量

设特征空间维实数向量空间 ,,, ,则:,距离定义为:

  •  曼哈顿距离
  •  欧氏距离
  •  切比雪夫距离
import mathfrom itertools import combinations
def L(x, y, p=2): # x1 = [1, 1], x2 = [5,1] if len(x) == len(y) and len(x) > 1: sum = 0 for i in range(len(x)): sum += math.pow(abs(x[i] - y[i]), p) return math.pow(sum, 1 / p) else: return 0

课本例 3.1

x1 = [1, 1]x2 = [5, 1]x3 = [4, 4]
# x1, x2for i in range(1, 5): r = {'1-{}'.format(c): L(x1, c, p=i) for c in [x2, x3]} print(min(zip(r.values(), r.keys())))
(4.0, '1-[5, 1]')
(4.0, '1-[5, 1]')
(3.7797631496846193, '1-[4, 4]')
(3.5676213450081633, '1-[4, 4]')

python 实现,遍历所有数据点,找出个距离最近的点的分类情况,少数服从多数

import numpy as npimport pandas as pdimport matplotlib.pyplot as plt%matplotlib inline
from sklearn.datasets import load_irisfrom sklearn.model_selection import train_test_splitfrom collections import Counter
# datairis = load_iris()df = pd.DataFrame(iris.data, columns=iris.feature_names)df['label'] = iris.targetdf.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']# data = np.array(df.iloc[:100, [0, 1, -1]])
df.head(10)

sepal lengthsepal widthpetal lengthpetal widthlabel
05.13.51.40.20
14.93.01.40.20
24.73.21.30.20
34.63.11.50.20
45.03.61.40.20
55.43.91.70.40
64.63.41.40.30
75.03.41.50.20
84.42.91.40.20
94.93.11.50.10
plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')plt.xlabel('sepal length')plt.ylabel('sepal width')plt.legend()

data = np.array(df.iloc[:100, [0, 1, -1]])X, y = data[:,:-1], data[:,-1]X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
class KNN: def __init__(self, X_train, y_train, n_neighbors=3, p=2): """ parameter: n_neighbors 临近点个数 parameter: p 距离度量 """ self.n = n_neighbors self.p = p self.X_train = X_train self.y_train = y_train
def predict(self, X): # 取出n个点 knn_list = [] for i in range(self.n): dist = np.linalg.norm(X - self.X_train[i], ord=self.p) knn_list.append((dist, self.y_train[i]))
for i in range(self.n, len(self.X_train)): max_index = knn_list.index(max(knn_list, key=lambda x: x[0])) dist = np.linalg.norm(X - self.X_train[i], ord=self.p) if knn_list[max_index][0] > dist: knn_list[max_index] = (dist, self.y_train[i])
# 统计 knn = [k[-1] for k in knn_list] count_pairs = Counter(knn)# max_count = sorted(count_pairs, key=lambda x: x)[-1] max_count = sorted(count_pairs.items(), key=lambda x: x[1])[-1][0] return max_count
def score(self, X_test, y_test): right_count = 0 n = 10 for X, y in zip(X_test, y_test): label = self.predict(X) if label == y: right_count += 1 return right_count / len(X_test)
clf = KNN(X_train, y_train)
clf.score(X_test, y_test)
1.0
test_point = [6.0, 3.0]print('Test Point: {}'.format(clf.predict(test_point)))
Test Point: 1.0
plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')plt.plot(test_point[0], test_point[1], 'bo', label='test_point')plt.xlabel('sepal length')plt.ylabel('sepal width')plt.legend()

scikit-learn 实例

from sklearn.neighbors import KNeighborsClassifier
clf_sk = KNeighborsClassifier()clf_sk.fit(X_train, y_train)
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
metric_params=None, n_jobs=None, n_neighbors=5, p=2,
weights='uniform')
clf_sk.score(X_test, y_test)
1.0

sklearn.neighbors.KNeighborsClassifier

  • n_neighbors: 临近点个数
  • p: 距离度量
  • algorithm: 近邻算法,可选{'auto', 'ball_tree', 'kd_tree', 'brute'}
  • weights: 确定近邻的权重

kd 树

kd树是一种对 k 维空间中的实例点进行存储以便对其进行快速检索的树形数据结构。

kd树是二叉树,表示对维空间的一个划分(partition)。构造kd树相当于不断地用垂直于坐标轴的超平面将维空间切分,构成一系列的 k 维超矩形区域。kd 树的每个结点对应于一个维超矩形区域。

构造kd树的方法如下:

构造根结点,使根结点对应于维空间中包含所有实例点的超矩形区域;通过下面的递归方法,不断地对维空间进行切分,生成子结点。在超矩形区域(结点)上选择一个坐标轴和在此坐标轴上的一个切分点,确定一个超平面,这个超平面通过选定的切分点并垂直于选定的坐标轴,将当前超矩形区域切分为左右两个子区域 (子结点);这时,实例被分到两个子区域。这个过程直到子区域内没有实例时终止(终止时的结点为叶结点)。在此过程中,将实例保存在相应的结点上。

通常,依次选择坐标轴对空间切分,选择训练实例点在选定坐标轴上的中位数 (median)为切分点,这样得到的kd树是平衡的。注意,平衡的kd树搜索时的效率未必是最优的。

构造平衡 kd 树算法

输入:维空间数据集

其中 ,

输出:kd树。

(1)开始:构造根结点,根结点对应于包含维空间的超矩形区域。

选择为坐标轴,以 T 中所有实例的坐标的中位数为切分点,将根结点对应的超矩形区域切分为两个子区域。切分由通过切分点并与坐标轴垂直的超平面实现。

由根结点生成深度为 1 的左、右子结点:左子结点对应坐标小于切分点的子区域, 右子结点对应于坐标大于切分点的子区域。

将落在切分超平面上的实例点保存在根结点。

(2)重复:对深度为的结点,选择为切分的坐标轴,,以该结点的区域中所有实例的坐标的中位数为切分点,将该结点对应的超矩形区域切分为两个子区域。切分由通过切分点并与坐标轴垂直的超平面实现。

由该结点生成深度为的左、右子结点:左子结点对应坐标小于切分点的子区域,右子结点对应坐标大于切分点的子区域。

将落在切分超平面上的实例点保存在该结点。

(3)直到两个子区域没有实例存在时停止。从而形成kd树的区域划分。

# kd-tree每个结点中主要包含的数据结构如下class KdNode(object): def __init__(self, dom_elt, split, left, right): self.dom_elt = dom_elt # k维向量节点(k维空间中的一个样本点) self.split = split # 整数(进行分割维度的序号) self.left = left # 该结点分割超平面左子空间构成的kd-tree self.right = right # 该结点分割超平面右子空间构成的kd-tree

class KdTree(object): def __init__(self, data): k = len(data[0]) # 数据维度
def CreateNode(split, data_set): # 按第split维划分数据集exset创建KdNode if not data_set: # 数据集为空 return None # key参数的值为一个函数,此函数只有一个参数且返回一个值用来进行比较 # operator模块提供的itemgetter函数用于获取对象的哪些维的数据,参数为需要获取的数据在对象中的序号 #data_set.sort(key=itemgetter(split)) # 按要进行分割的那一维数据排序 data_set.sort(key=lambda x: x[split]) split_pos = len(data_set) // 2 # //为Python中的整数除法 median = data_set[split_pos] # 中位数分割点 split_next = (split + 1) % k # cycle coordinates
# 递归的创建kd树 return KdNode( median, split, CreateNode(split_next, data_set[:split_pos]), # 创建左子树 CreateNode(split_next, data_set[split_pos + 1:])) # 创建右子树
self.root = CreateNode(0, data) # 从第0维分量开始构建kd树,返回根节点

# KDTree的前序遍历def preorder(root): print(root.dom_elt) if root.left: # 节点不为空 preorder(root.left) if root.right: preorder(root.right)
# 对构建好的kd树进行搜索,寻找与目标点最近的样本点:from math import sqrtfrom collections import namedtuple
# 定义一个namedtuple,分别存放最近坐标点、最近距离和访问过的节点数result = namedtuple("Result_tuple", "nearest_point nearest_dist nodes_visited")

def find_nearest(tree, point): k = len(point) # 数据维度
def travel(kd_node, target, max_dist): if kd_node is None: return result([0] * k, float("inf"), 0) # python中用float("inf")和float("-inf")表示正负无穷
nodes_visited = 1
s = kd_node.split # 进行分割的维度 pivot = kd_node.dom_elt # 进行分割的“轴”
if target[s] <= pivot[s]: # 如果目标点第s维小于分割轴的对应值(目标离左子树更近) nearer_node = kd_node.left # 下一个访问节点为左子树根节点 further_node = kd_node.right # 同时记录下右子树 else: # 目标离右子树更近 nearer_node = kd_node.right # 下一个访问节点为右子树根节点 further_node = kd_node.left
temp1 = travel(nearer_node, target, max_dist) # 进行遍历找到包含目标点的区域
nearest = temp1.nearest_point # 以此叶结点作为“当前最近点” dist = temp1.nearest_dist # 更新最近距离
nodes_visited += temp1.nodes_visited
if dist < max_dist: max_dist = dist # 最近点将在以目标点为球心,max_dist为半径的超球体内
temp_dist = abs(pivot[s] - target[s]) # 第s维上目标点与分割超平面的距离 if max_dist < temp_dist: # 判断超球体是否与超平面相交 return result(nearest, dist, nodes_visited) # 不相交则可以直接返回,不用继续判断
#---------------------------------------------------------------------- # 计算目标点与分割点的欧氏距离 temp_dist = sqrt(sum((p1 - p2)**2 for p1, p2 in zip(pivot, target)))
if temp_dist < dist: # 如果“更近” nearest = pivot # 更新最近点 dist = temp_dist # 更新最近距离 max_dist = dist # 更新超球体半径
# 检查另一个子结点对应的区域是否有更近的点 temp2 = travel(further_node, target, max_dist)
nodes_visited += temp2.nodes_visited if temp2.nearest_dist < dist: # 如果另一个子结点内存在更近距离 nearest = temp2.nearest_point # 更新最近点 dist = temp2.nearest_dist # 更新最近距离
return result(nearest, dist, nodes_visited)
return travel(tree.root, point, float("inf")) # 从根节点开始递归

例 3.2

data = [[2,3],[5,4],[9,6],[4,7],[8,1],[7,2]]kd = KdTree(data)preorder(kd.root)
[7, 2]
[5, 4]
[2, 3]
[4, 7]
[9, 6]
[8, 1]
from time import clockfrom random import random
# 产生一个k维随机向量,每维分量值在0~1之间def random_point(k): return [random() for _ in range(k)]
# 产生n个k维随机向量def random_points(k, n): return [random_point(k) for _ in range(n)]
ret = find_nearest(kd, [3,4.5])print (ret)
Result_tuple(nearest_point=[2, 3], nearest_dist=1.8027756377319946, nodes_visited=4)
N = 400000t0 = clock()kd2 = KdTree(random_points(3, N)) # 构建包含四十万个3维空间样本点的kd树ret2 = find_nearest(kd2, [0.1,0.5,0.8]) # 四十万个样本点中寻找离目标最近的点t1 = clock()print ("time: ",t1-t0, "s")print (ret2)
time: 5.204035100000002 s
Result_tuple(nearest_point=[0.09308431086306368, 0.5071110780404813, 0.7998624450062822], nearest_dist=0.009920338124925524, nodes_visited=88)

参考资料

[1] 《统计学习方法》: https://baike.baidu.com/item/统计学习方法/10430179
[2] 黄海广: https://github.com/fengdu78
[3] github: https://github.com/fengdu78/lihang-code
[4] wzyonggege: https://github.com/wzyonggege/statistical-learning-method
[5] WenDesi: https://github.com/WenDesi/lihang_book_algorithm
[6] 火烫火烫的: https://blog.csdn.net/tudaodiaozhale



关于本站

机器学习初学者”公众号由是黄海广博士创建,黄博个人知乎粉丝23000+,github排名全球前100名(33000+)。本公众号致力于人工智能方向的科普性文章,为初学者提供学习路线和基础资料。原创作品有:吴恩达机器学习个人笔记、吴恩达深度学习笔记等。


往期精彩回顾


备注:加入本站微信群或者qq群,请回复“加群

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存