查看原文
其他

Flink+Hologres亿级用户实时UV精确去重最佳实践

zhisheng 2022-11-29

因为业务需求不同,通常会分为两种场景:

  • 离线计算场景:以T+1为主,计算历史数据
  • 实时计算场景:实时计算日常新增的数据,对用户标签去重

针对离线计算场景,Hologres基于RoaringBitmap,提供超高基数的UV计算,只需进行一次最细粒度的预聚合计算,也只生成一份最细粒度的预聚合结果表,就能达到亚秒级查询。具体详情可以参见往期文章>>Hologres如何支持超高基数UV计算(基于RoaringBitmap实现)

对于实时计算场景,可以使用Flink+Hologres方式,并基于RoaringBitmap,实时对用户标签去重。这样的方式,可以较细粒度的实时得到用户UV、PV数据,同时便于根据需求调整最小统计窗口(如最近5分钟的UV),实现类似实时监控的效果,更好的在大屏等BI展示。相较于以天、周、月等为单位的去重,更适合在活动日期进行更细粒度的统计,并且通过简单的聚合,也可以得到较大时间单位的统计结果。

主体思想

Flink将流式数据转化为表与维表进行JOIN操作,再转化为流式数据。此举可以利用Hologres维表的insertIfNotExists特性结合自增字段实现高效的uid映射。

Flink把关联的结果数据按照时间窗口进行处理,根据查询维度使用RoaringBitmap进行聚合,并将查询维度以及聚合的uid存放在聚合结果表,其中聚合出的uid结果放入Hologres的RoaringBitmap类型的字段中。

查询时,与离线方式相似,直接按照查询条件查询聚合结果表,并对其中关键的RoaringBitmap字段做or运算后并统计基数,即可得出对应用户数。

处理流程如下图所示

方案最佳实践

1.创建相关基础表

1)创建表uid_mapping为uid映射表,用于映射uid到32位int类型。

RoaringBitmap类型要求用户ID必须是32位int类型且越稠密越好(即用户ID最好连续)。常见的业务系统或者埋点中的用户ID很多是字符串类型或Long类型,因此需要使用uid_mapping类型构建一张映射表。映射表利用Hologres的SERIAL类型(自增的32位int)来实现用户映射的自动管理和稳定映射。

由于是实时数据, 设置该表为行存表,以提高Flink维表实时JOIN的QPS。

BEGIN;
CREATE TABLE public.uid_mapping (
uid text NOT NULL,
uid_int32 serial,
PRIMARY KEY (uid)
);
--将uid设为clustering_key和distribution_key便于快速查找其对应的int32值
CALL set_table_property('public.uid_mapping''clustering_key''uid');
CALL set_table_property('public.uid_mapping''distribution_key''uid');
CALL set_table_property('public.uid_mapping''orientation''row');
COMMIT;

2)创建表dws_app为基础聚合表,用于存放在基础维度上聚合后的结果。

使用RoaringBitmap前需要创建RoaringBitmap extention,同时也需要Hologres实例为0.10版本

CREATE EXTENSION IF NOT EXISTS roaringbitmap;

为了更好性能,建议根据基础聚合表数据量合理的设置Shard数,但建议基础聚合表的Shard数设置不超过计算资源的Core数。推荐使用以下方式通过Table Group来设置Shard数

--新建shard数为16的Table Group,
--因为测试数据量百万级,其中后端计算资源为100core,设置shard数为16
BEGIN;
CREATE TABLE tg16 (a int);                             --Table Group哨兵表
call set_table_property('tg16''shard_count''16'); 
COMMIT;

相比离线结果表,此结果表增加了时间戳字段,用于实现以Flink窗口周期为单位的统计。结果表DDL如下:

BEGIN;
create table dws_app(
  country text,
  prov text,
  city text, 
  ymd text NOT NULL,  --日期字段
  timetz TIMESTAMPTZ,  --统计时间戳,可以实现以Flink窗口周期为单位的统计
  uid32_bitmap roaringbitmap, -- 使用roaringbitmap记录uv
  primary key(country, prov, city, ymd, timetz)--查询维度和时间作为主键,防止重复插入数据
);
CALL set_table_property('public.dws_app''orientation''column');
--日期字段设为clustering_key和event_time_column,便于过滤
CALL set_table_property('public.dws_app''clustering_key''ymd');
CALL set_table_property('public.dws_app''event_time_column''ymd');
--等价于将表放在shard数为16的table group
call set_table_property('public.dws_app''colocate_with''tg16');
--group by字段设为distribution_key
CALL set_table_property('public.dws_app''distribution_key''country,prov,city');
COMMIT;

2.Flink实时读取数据并更新dws_app基础聚合表

完整示例源码请见alibabacloud-hologres-connectors examples

1)Flink 流式读取数据源(DataStream),并转化为源表(Table)

//此处使用csv文件作为数据源,也可以是kafka等
DataStreamSource odsStream = env.createInput(csvInput, typeInfo);
// 与维表join需要添加proctime字段,详见https://help.aliyun.com/document_detail/62506.html
Table odsTable =
    tableEnv.fromDataStream(
    odsStream,
    $("uid"),
    $("country"),
    $("prov"),
    $("city"),
    $("ymd"),
    $("proctime").proctime());
// 注册到catalog环境
tableEnv.createTemporaryView("odsTable", odsTable);

2)将源表与Hologres维表(uid_mapping)进行关联

其中维表使用insertIfNotExists参数,即查询不到数据时自行插入,uid_int32字段便可以利用Hologres的serial类型自增创建。

// 创建Hologres维表,其中nsertIfNotExists表示查询不到则自行插入
String createUidMappingTable =
    String.format(
    "create table uid_mapping_dim("
    + "  uid string,"
    + "  uid_int32 INT"
    + ") with ("
    + "  'connector'='hologres',"
    + "  'dbname' = '%s'," //Hologres DB名
    + "  'tablename' = '%s',"//Hologres 表名
    + "  'username' = '%s'," //当前账号access id
    + "  'password' = '%s'," //当前账号access key
    + "  'endpoint' = '%s'," //Hologres endpoint
    + "  'insertifnotexists'='true'"
    + ")",
    database, dimTableName, username, password, endpoint);
tableEnv.executeSql(createUidMappingTable);
// 源表与维表join
String odsJoinDim =
    "SELECT ods.country, ods.prov, ods.city, ods.ymd, dim.uid_int32"
    + "  FROM odsTable AS ods JOIN uid_mapping_dim FOR SYSTEM_TIME AS OF ods.proctime AS dim"
    + "  ON ods.uid = dim.uid";
Table joinRes = tableEnv.sqlQuery(odsJoinDim);

3)将关联结果转化为DataStream,通过Flink时间窗口处理,结合RoaringBitmap进行聚合

DataStream<Tuple6<String, String, String, String, Timestamp, byte[]>> processedSource =
    source
    // 筛选需要统计的维度(country, prov, city, ymd)
    .keyBy(0, 1, 2, 3)
    // 滚动时间窗口;此处由于使用读取csv模拟输入流,采用ProcessingTime,实际使用中可使用EventTime
    .window(TumblingProcessingTimeWindows.of(Time.minutes(5)))
    // 触发器,可以在窗口未结束时获取聚合结果
    .trigger(ContinuousProcessingTimeTrigger.of(Time.minutes(1)))
    .aggregate(
    // 聚合函数,根据key By筛选的维度,进行聚合
    new AggregateFunction<
        Tuple5<String, String, String, String, Integer>,
        RoaringBitmap,
        RoaringBitmap>() {
            @Override
            public RoaringBitmap createAccumulator() {
                return new RoaringBitmap();
            }
            @Override
            public RoaringBitmap add(
                Tuple5<String, String, String, String, Integer> in,
                RoaringBitmap acc) {
                // 将32位的uid添加到RoaringBitmap进行去重
                acc.add(in.f4);
                return acc;
            }
            @Override
            public RoaringBitmap getResult(RoaringBitmap acc) {
                return acc;
            }
            @Override
            public RoaringBitmap merge(
                RoaringBitmap acc1, RoaringBitmap acc2) {
                return RoaringBitmap.or(acc1, acc2);
            }
     },
    //窗口函数,输出聚合结果
    new WindowFunction<
        RoaringBitmap,
        Tuple6<String, String, String, String, Timestamp, byte[]>,
        Tuple,
        TimeWindow>() {
            @Override
            public void apply(
                Tuple keys,
                TimeWindow timeWindow,
                Iterable<RoaringBitmap> iterable,
                Collector<
                Tuple6<String, String, String, String, Timestamp, byte[]>> out)
                throws Exception {
                RoaringBitmap result = iterable.iterator().next();
                // 优化RoaringBitmap
                result.runOptimize();
                // 将RoaringBitmap转化为字节数组以存入Holo中
                byte[] byteArray = new byte[result.serializedSizeInBytes()];
                result.serialize(ByteBuffer.wrap(byteArray));
                // 其中 Tuple6.f4(Timestamp) 字段表示以窗口长度为周期进行统计,以秒为单位
                out.collect(
                    new Tuple6<>(
                        keys.getField(0),
                        keys.getField(1),
                        keys.getField(2),
                        keys.getField(3),
                        new Timestamp(
                            timeWindow.getEnd() / 1000 * 1000),
                        byteArray));
        }
    });

4)写入结果表

需要注意的是,Hologres中RoaringBitmap类型在Flink中对应Byte数组类型

// 计算结果转换为表
Table resTable =
    tableEnv.fromDataStream(
        processedSource,
        $("country"),
        $("prov"),
        $("city"),
        $("ymd"),
        $("timest"),
        $("uid32_bitmap"));
// 创建Hologres结果表, 其中Hologres的RoaringBitmap类型通过Byte数组存入
String createHologresTable =
    String.format(
        "create table sink("
        + "  country string,"
        + "  prov string,"
        + "  city string,"
        + "  ymd string,"
        + "  timetz timestamp,"
        + "  uid32_bitmap BYTES"
        + ") with ("
        + "  'connector'='hologres',"
        + "  'dbname' = '%s',"
        + "  'tablename' = '%s',"
        + "  'username' = '%s',"
        + "  'password' = '%s',"
        + "  'endpoint' = '%s',"
        + "  'connectionSize' = '%s',"
        + "  'mutatetype' = 'insertOrReplace'"
        + ")",
    database, dwsTableName, username, password, endpoint, connectionSize);
tableEnv.executeSql(createHologresTable);
// 写入计算结果到dws表
tableEnv.executeSql("insert into sink select * from " + resTable);

3.数据查询

查询时,从基础聚合表(dws_app)中按照查询维度做聚合计算,查询bitmap基数,得出group by条件下的用户数

查询某天内各个城市的uv

--运行下面RB_AGG运算查询,可执行参数先关闭三阶段聚合开关(默认关闭),性能更好
set hg_experimental_enable_force_three_stage_agg=off  
SELECT  country
        ,prov
        ,city
        ,RB_CARDINALITY(RB_OR_AGG(uid32_bitmap)) AS uv
FROM    dws_app
WHERE   ymd = '20210329'
GROUP BY country
         ,prov
         ,city
;

查询某段时间内各个省份的uv

--运行下面RB_AGG运算查询,可执行参数先关闭三阶段聚合开关(默认关闭),性能更好
set hg_experimental_enable_force_three_stage_agg=off 
SELECT  country
        ,prov
        ,RB_CARDINALITY(RB_OR_AGG(uid32_bitmap)) AS uv
FROM    dws_app
WHERE   time > '2021-04-19 18:00:00+08' and time < '2021-04-19 19:00:00+08'
GROUP BY country
         ,prov
;

本文链接:https://zhuanlan.zhihu.com/p/377588369

end







公众号(zhisheng)里回复 面经、ClickHouse、ES、Flink、 Spring、Java、Kafka、监控 等关键字可以查看更多关键字对应的文章。

点个赞+在看,少个 bug 👇

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存