查看原文
其他

《深入理解 JVM 3ed》读书笔记

wuYin zhisheng 2022-11-29

前言


刷豆瓣看到《深入理解 JVM》出第三版了,遂买之更新 JVM 知识,本文为笔记,仅供个人 Review

ch02. Java 内存区域与内存溢出


2.1 运行时数据区域

参考:JVM 规范,Memories of a Java Runtime

:JVM 启动时按-Xmx, -Xms大小创建的内存区域,用于分配对象、数组所需内存,由 GC 管理和回收

方法区:存储被 JVM 加载的类信息(字段、成员方法的字节码指令等)、运行时常量池(字面量、符号引用等)、JIT 编译后的 Code Cache 等信息;JDK8 前 Hotspot 将方法区存储于永久代堆内存,之后参考 JRockit 废弃了永久代,存储于本地内存的 Metaspace 区

直接内存:JDK1.4 引入 NIO 使用 Native/Unsafe 库直接分配系统内存,使用 Buffer,Channel 与其交互,避免在系统内存与 JVM 堆内存之间拷贝的开销

线程私有内存

  • 程序计数器:记录当前线程待执行的下一条指令位置,上下文切换后恢复执行,由字节码解释器负责更新

  • JVM 栈

    • 描述 Java 方法执行的内存模型:执行新方法时创建栈帧,存储局部变量表、操作数栈等信息

    • 存储单位:变量槽 slot,long, double占 2 个 slot,其他基本数据类型、引用类型占 1 个,故表的总长度在编译期可知

  • 本地方法栈:执行本地 C/C++ 方法


2.2 JVM 对象

1. 创建对象

分配堆内存:类加载完毕后,其对象所需内存大小是确定的;堆内存由多线程共享,若并发创建对象都通过 CAS 乐观锁争夺内存,则效率低。故线程创建时在堆内存为其分配私有的分配缓冲区(TLAB:Thread Local Allocation Buffer)

  • 内存模型

  • 分配流程

    注:当 TLAB 剩余空间不足以分配新对象,但又小于最大浪费空间阈值时,才会加锁创建新的 TLAB

零值初始化对象的堆内存、设置对象头信息、执行构造函数 <init>()V

2. 对象的内存布局

对象头

  • Mark Word:记录对象的运行时信息,如 hashCode,GC 分代年龄,尾部 2 bit 用于标记锁状态

  • Class Pointer:指向所属的类信息

  • 数组长度(可选,对象为数组):4 字节存储其长度

对象数据:各种字段的值,按宽度分类紧邻存储

对齐填充:内存对齐为 1 个字长整数倍,减少 CPU 总线周期

验证:openjdk/jol 检查对象内存布局

public class User {
private int age = -1;
private String name = "unknown";
}

// java -jar ~/Downloads/jol-cli-latest.jar internals -cp . com.jol.User
OFF SZ TYPE DESCRIPTION VALUE
0 8 (object header: mark) 0x0000000000000001 (non-biasable; age: 0)
8 4 (object header: class) 0xf8021e85 // User.class 引用地址
12 4 int User.age -1 // 基本类型则直接存储值
16 4 java.lang.String User.name (object) // 引用类型,指向运行时常量池中的 String 对象
20 4 (object alignment gap) // 有 4 字节的内存填充
Instance size: 24 bytes

2.3 内存溢出

堆内存-Xms指定堆初始大小,当大量无法被回收的对象所占内存超出-Xmx上限时,将发生内存溢出 OutOfMemoryError

  • 排查:通过 Eclipse MAT 分析 -XX:+HeapDumpOnOutOfMemory生成的 *.hprof 堆转储文件,定位无法被回收的大对象,找出其 GC Root 引用路径

  • 解决:若为内存泄露,则修改代码用null显式赋值、虚引用等方式及时回收大对象;若为内存溢出,大对象都是必须存活的,则调大-Xmx、减少大对象的生命周期、检查数据结构使用是否合理等

    // -Xms20m -Xmx20m -XX:+HeapDumpOnOutOfMemoryError
    public class HeapOOM {
    static class OOMObject {}
    public static void main(String[] args) {
    List<OOMObject> vs = new ArrayList<>();
    while (true)
    vs.add(new OOMObject());
    }
    }

    分析 GC Root 发现com.ch02.HeapOOM对象间接引用了大量的OOMObject对象,共占用 15.4MB 堆内存,无法回收最终导致 OOM

栈内存-Xss指定栈大小,当栈深度超阈值(比如未触发终止条件的递归调用)、本地方法变量表过大等,都可能导致内存溢出 StackOverflowError

方法区-XX:MetaspaceSize指定元空间初始大小,-XX:MaxMetaspaceSize指定最大大小,默认 -1 无限制,若在运行时动态生成大量的类,则可能触发 OOM

运行时常量池strObj.intern()动态地将首次出现的字符串对象放入字符串常量池并返回,JDK7 前会拷贝到永久代,之后则直接引用堆对象

String s1 = "java"; // 类加载时,从字节码常量池中拷贝符号到了运行时常量池,在解析阶段初始化的字符串对象
String s2 = "j";
String s3 = s2 + "ava"; // 堆上动态分配的字符串对象
println(s3 == s1); // false
println(s3.intern() == s1); // true // 已在字符串常量池中存在

直接内存-XX:MaxDirectMemorySize指定大小,默认与-Xmx一样大,不被 GC 管理,申请内存超阈值时 OOM


ch03. 垃圾回收与内存分配

GC 可分解为 3 个子问题:which(哪些内存可被回收)、when(什么时候回收)、how(如何回收)

3.1 GC 条件

1. 引用计数算法(reference counting)

原理:每个对象都维护一个引用计数器rc,当通过赋值、传参等方式引用它时rc++,当引用变量修改指向、离开函数作用域等方式解除引用时rc--,递减到 0 时说明对象无法再被使用,可回收。伪代码:

assign(var, obj):
incr_ref(obj) # self = self # 先增再减,避免引用自身导致内存提前释放
decr_ref(var)
var = obj

incr(obj):
obj.rc++

decr(obj):
obj.rc--
if obj.rc == 0:
remove_ref(obj) # 断开 obj 与其他对象的引用关系
gc(obj) # 回收 obj 内存

优点:思路简单,对象无用即回收,延迟低,适合内存少的场景

缺点:此算法中对象是孤立的,无法在全局视角检查对象的真实有效性,循环引用的双方对象需引入外部机制来检测和回收,如下图红色圈(图源:what-is-garbage-collection)

2. 可达性分析算法(reachability analysis)

原理:从肯定不会被回收的对象(GC Roots)出发,向外搜索全局对象图,不可达的对象即无法再被使用,可回收;常见可作为 GC Root 的对象有:

  • 执行上下文:JVM 栈中参数、局部变量、临时变量等引用的堆对象

  • 全局引用:方法区中类的静态引用、常量引用(如 StringTable 中的字符串对象)所指向的对象

优点:无需对象维护 GC 元信息,开销小;单次扫描即可批量识别、回收对象,吞吐高

缺点:多线程环境下对象间的引用关系随时在变化,为保证 GC Root 标记的准确性,需在不变化的 snapshot 中进行,会产生 Stop The World(以下简称 STW) 卡顿现象

3. 四种引用类型

引用类型回收时机
强引用-只要与 GC Root 存在引用链,则不被回收
软引用SoftReference只被软引用所引用的对象,当 GC 后内存依然不足,才被回收
弱引用WeakReference只被弱引用所引用的对象,无论内存是否足够,都将被回收
虚引用PhantomReference被引用的对象无感知,进行正常 GC,仅在回收时通知虚引用(回调)

示例:限制堆內存 50MB,其中新生代 30MB,老年代 20MB;依次分配 5 次 10MB 的byte[]对象,仅使用软引用来引用,观察 GC 过程

public static void main(String[] args) {
// softRefList --> SoftReference --> 10MB byte[]
List<SoftReference<byte[]>> softRefList = new ArrayList<>();
ReferenceQueue<byte[]> softRefQueue = new ReferenceQueue<>(); // 无效引用队列
for (int i = 0; i < 5; i++) {
SoftReference<byte[]> softRef = new SoftReference<>(new byte[10*1024*1024], softRefQueue);
softRefList.add(softRef);

for (SoftReference<byte[]> ref : softRefList) // dump 所有软引用指向的对象,检查是否已被回收
System.out.print(ref.get() == null ? "gced " : "ok ");
System.out.println();
}
Reference<? extends byte[]> ref = softRefQueue.poll();
while (ref != null) {
softRefList.remove(ref); // 解除对软引用对象本身的引用
ref = softRefQueue.poll();
}
System.out.println("effective soft ref: " + softRefList.size()); // 2
}

// java -verbose:gc -XX:NewSize=30m -Xms50m -Xmx50m -XX:+PrintGCDetails com.ch02.DemoRef
ok
ok ok
// 分配第三个 []byte 时,Eden GC 无效,触发 Full GC 将一个 []byte 晋升到老年区
// 此时三个 byte[] 都只被软引用所引用,被标记为待二次回收(若为弱引用,此时 Eden 已被回收)
[GC (Allocation Failure) --[PSYoungGen: 21893K->21893K(27136K)] 21893K->32141K(47616K), 0.0046324 secs]
[Full GC (Ergonomics) [PSYoungGen: 21893K->10527K(27136K)] [ParOldGen: 10248K->10240K(20480K)] 32141K->20767K(47616K), [Metaspace: 2784K->2784K(1056768K)], 0.004 secs]
ok ok ok
// 再次 GC,前三个 byte[] 全部被回收
[GC (Allocation Failure) --[PSYoungGen: 20767K->20767K(27136K)] 31007K->31007K(47616K), 0.0007963 secs]
[Full GC (Ergonomics) [PSYoungGen: 20767K->20759K(27136K)] [ParOldGen: 10240K->10240K(20480K)] 31007K->30999K(47616K), [Metaspace: 2784K->2784K(1056768K)], 0.003 secs]
[GC (Allocation Failure) --[PSYoungGen: 20759K->20759K(27136K)] 30999K->30999K(47616K), 0.0007111 secs]
[Full GC (Allocation Failure) [PSYoungGen: 20759K->0K(27136K)] [ParOldGen: 10240K->267K(20480K)] 30999K->267K(47616K), [Metaspace: 2784K->2784K(1056768K)], 0.003 secs]
gced gced gced ok
gced gced gced ok ok

4. finalize

原理:若对象不可达,被标记为可回收后,会进行finalize()是否被重写、是否已执行过等条件筛选,若通过则对象会被放入 F-Queue 队列,等待低优先级的后台 Finalizer 线程触发其finallize() 的执行(不保证执行结束),对象可在finalize中建立与 GC Root 对象图上任一节点的引用关系,来逃脱 GC

使用:finalize 机制与 C++ 中的析构函数并不等价,其执行结果并不确定,不推荐使用,可用try-finally替代


3.2 GC 算法

分代收集理论

两个分代假说:符合大多数程序运行的实际情况

  • 弱分代假说:绝大多数对象是朝生夕灭,生存时间极短

  • 强分代假说:熬过越多次 GC 的对象,越可能被继续使用,越难以回收

对应地,JVM 堆被划分为 2 个不同区域,将对象按年龄分类,兼顾了 GC 耗时与内存利用率

  • 新生代:大量对象将被回收,只关注仍存活的对象,逐步晋升

  • 老年代:大量对象不被回收,只关注要被回收的对象

跨代引用

  • 问题:老年代会引用新生代,新生代 GC 时需遍历老年代中大量的存活对象,分析可达性,时间复杂度高

  • 背景:相互引用的对象倾向于同时存亡,比如跨代引用关系中的新生代必然会逐步晋升,最终消除跨代关系

  • 假说:跨代引用相比同代引用只占极少数,无需全量扫描老年代

  • 实现:新生代维护全局数据结构:记忆集(Remembered Set),将老年代分为多个子块,标记存在跨代引用的子块,等待后续扫描;代价:为保证记忆集的正确性,需在跨代引用建立或断开时保持同步

1. 标记清除:Mark-Sweep

  • 原理:标记不可达对象,统一清理回收,反之亦可

  • 缺点:执行效率不稳定,回收耗时取决于活跃对象的数量;内存碎片多,会出现内存充足但无法分配过大的连续内存(数组)

2. 标记复制:Mark-Copy

  • 理论:将堆内存切为两等份 A, B,每次仅使用 A,用完后标记存活对象复制到 B,清空 A 后执行 swap

  • 优点:直接针对半区回收,无内存碎片问题;分配内存只需移动堆顶指针,高效顺序分配

  • 缺点:当 A 区有大量存活对象时,复制开销大;B 区长时间闲置,内存浪费严重

  • 实践:对于存活对象少的新生代,无需按 1:1 分配,而是按 8:1:1 的内存布局,其中 Eden 和 From 区同时使用,只有 To 区会被闲置(担保机制:若 To 区不够容纳 Minor GC 后的存活对象,则晋升到老年区)

3. 标记整理:Mark-Compact

  • 原理:标记存活对象后统一移动到内存空间一侧,再回收边界之外的内存

  • 优点:内存模型简单,无内存碎片,降低内存分配和访问的时间成本,能提高吞吐

  • 缺点:对象移动需 STW 同步更新引用关系,会增加延迟


3.3 HotSpot GC 算法细节

1. 发起 GC:安全点与安全区域

  • 问题:为保证可达性分析结果的准确性,需挂起用户线程(STW),再从各线程的执行上下文中收集 GC Root,如何通知线程挂起?

  • 安全点:HotSpot 内部有线程中断标记;在各线程的方法调用、循环跳转、异常跳转等会长时间执行的指令处,额外插入检查该标记的test高效指令;若轮询发现标记为真,线程会主动在最近的 SafePoint 处挂起,此时其栈上对象的引用关系不再变化,可收集 GC Root 对象

  • 安全区域:引用关系不会变化的指令区域,可安全地收集 GC Root;线程离开此区域时,若 GC Root 收集过程还未结束,则需等待

示意图

2. 加速 GC:CardTable

问题:非收集区域(老年代)会存在到收集区域(新生代)的跨代引用,如何避免对前者的全量扫描?

卡表:记忆集的字节数组实现;将老年代内存划分为 Card Page(512KB)大小的子内存块,若新建跨代引用,则将对应的 Card 标记为 dirty,GC 时只需扫描老年代中被标记为 dirty 的子内存块

写屏障:有别于volatile禁用指令重排的内存屏障,GC 中的写屏障是在对象引用更新时执行额外 hook 动作的机制。简单实现:

void oop_field_store(oop* field, oop new_val) { // oop: ordinary object pointer
// pre_write_barrier(field, new_val); // 写前屏障:更新前先执行,使用 oop 旧状态
*field = new_val;
post_write_barrier(field, new_val); // 写后屏障:更新完才执行
}

使用写屏障保证 CardTable 的实时更新(图源:The JVM Write Barrier - Card Marking)

3. 正确 GC:并发可达性分析

参考演讲:Shenandoah: The Garbage Collector That Could by Aleksey Shipilev

问题:GC Roots 的对象源固定,故枚举时 STW 时间短暂且可控。但后续可达性分析的时间复杂度与堆中对象数量成正相关,即堆中对象越多,对象图越复杂,堆变大后 STW 时间不可接受

解决:并发标记。引出新问题:用户线程动态建立、解除引用,标记过程中图结构发生变化,结果不可靠;证明:用三色法描述对象状态

  • 白色:未被回收器访问过的对象;分析开始都是白色,分析结束还是白色则不可达

  • 灰色:被回收器访问过,但其上至少还有 1 个引用未被扫描(中间态)

  • 黑色:被回收器访问过,其上引用全部都已被扫描,存在引用链,为存活对象;若其他对象引用了黑色对象,则不必再扫描,肯定也存活;黑色不可能直接引用白色

STW 无并发的正确标记:顶部 3 个对象将被回收

用户线程并发修改引用,会导致标记结果无效,分 2 种情况:

  • 少回收,对象标记为存活,但用户解除了引用:产生浮动垃圾,可接受,等待下次 GC

  • 误回收,对象标记为可回收,但用户新建了引用:实际存活对象被回收,内存错误

     

论文《Uniprocessor Garbage Collection Techniques - Paul R. Wilson》§3.2 证明了「实际存活的对象被标记为可回收」必须同时满足两个条件(有时间序)

  • 插入一条或多条从黑色到白色的新引用

  • 删除所有灰色到该白色的直接、间接引用

为正确实现标记,打破其中一个条件即可(类比打破死锁四个条件之一的思想),分别对应两种方案:

  • 增量更新 Increment Update:记录黑到白的引用关系,并发标记结束后,以黑为根,重新扫描;A 直接存活

  • 原始快照 SATB(Snapshot At The Begining):记录灰到白的解引用关系,并发标记结束后,以灰为根,重新扫描;B 为灰色,最后变为黑色,存活。需注意,若没有步骤 3,则 B,C 变为浮动垃圾


3.4 经典垃圾回收器

搭配使用示意图:

1. Serial, SerialOld

原理:内存不足触发 GC 后会暂停所有用户线程,单线程地在新生代中标记复制,在老年代中标记整理,收集完毕后恢复用户线程

优点:全程 STW 简单高效

缺点:STW 时长与堆对象数量成正相关,且 GC 线程只能用到 1 core 无法加速

场景:单核 CPU 且可用内存少(如百兆级),JDK1.3 之前的唯一选择

2. ParNew

原理:多线程并行版的 Serial 实现,能有效减少 STW 时长;线程数默认与核数相同,可配置

场景:JDK7 之前搭配老年代的 CMS 回收器使用

3. Parallel, Parallel Old

垃圾回收有两个通常不可兼得的目标

  • 低延迟:STW 时长短,响应快;允许高频、短暂 GC,比如调小新生代空间,加快收集延迟(吞吐下降)

  • 高吞吐量:用户线程耗时 /(用户线程耗时 + GC 线程耗时)高,GC 总时间低;允许低频、单次长时间 GC,(延迟增加)

原理:与 ParNew 类似都是并行回收,主要增加了 3 个选项(倾向于提高吞吐量)

  • -XX:MaxGCPauseTime:控制最大延迟

  • -XX:GCTimeRatio:控制吞吐(默认 99%)

  • -XX:+UseAdaptiveSizePolicy :启用自适应策略,自动调整 Eden 与 2 个 Survivor 区的内存占比-XX:SurvivorRatio,老年代晋升阈值 -XX:PretenureSizeThreshold

4. CMS

CMS:Concurrent Mark Sweep,即并发标记清除,主要有 4 个阶段

  • 初始标记(initial mark):STW 快速收集 GC Roots

  • 并发标记(concurrent mark):从 GC Roots 出发检测引用链,标记可回收对象;与用户线程并发执行,通过增量更新来避免误回收

  • 重新标记(remark):STW 重新分析被增量更新所收集的 GC Roots

  • 并发清除(concurrent sweep):并发清除可回收对象

优点:两次 STW 时间相比并发标记耗时要短得多,相比前三种收集器,延迟大幅降低

缺点

  • CPU 敏感:若核数较少(< 4core),并发标记将占用大量 CPU 时间,会导致吞吐突降

  • 无法处理浮动垃圾:-XX:CMSInitiatingOccupancyFration(默认 92%)指定触发 CMS GC 的阈值;在并发标记、并发清理的同时,用户线程会产生浮动垃圾(引用可回收对象、产生新对象),若浮动垃圾占比超过-XX:CMSInitiatingOccupancyFration;若 GC 的同时产生过多的浮动垃圾,导致老年代内存不足,会出现 CMS 并发失败,退化为 Serial Old 执行 Full GC,会导致延迟突增

  • 无法避免内存碎片:-XX:CMSFullGCsBeforeCompaction(默认 0)指定每次在 Full GC 前,先整理老年代的内存碎片

5. G1

特点:基于 region 内存布局实现局部回收;GC 延迟目标可配置;无内存碎片问题


G1之前回收器
堆内存划分方式多个等大的 region, 各 region 分代角色并不固定,按需在 Eden, Survivor, Old 间切换固定大小、固定数量的分代区域
回收目标回收价值高的 region 动态组成的回收集合新生代、整个堆内存

跨代引用:各 region 除了用卡表标记各卡页是否为 dirty 之外,还用哈希表记录了各卡页正在被哪些 region 引用,通过这种“双向指针”机制,能直接找到 Old 区,避免了全量扫描(G1 自身内存开销大头)

G1 GC 有 3 个阶段(参考其 GC 日志)

  • 新生代 GC:Eden 区占比超阈值触发;标记存活对象并复制到 Survivor 区,其内可能有对象会晋升到 Old 区

  • 老年代 GC:Old 区占比达到阈值后触发,执行标记整理

    • 初始标记:枚举 GC Roots,已在新生代 GC 时顺带完成

    • 并发标记:并发执行可达性分析,使用 SATB 记录引用变更

    • 重新标记:SATB 分析,避免误回收

    • 筛选回收:将 region 按回收价值和时间成本筛选组成回收集,STW 将存活对象拷贝到空 regions 后清理旧 regions,完成回收

  • 混合 GC

参数控制(文档:HotSpot GC Tuning Guide)

参数及默认值描述
‐XX:+UseG1GCJDK9 之前手动启用 G1
-XX:MaxGCPauseMillis=200预期的最大 GC 停顿时间;不宜过小,避免每次回收内存少而导致频繁 GC
-XX:ParallelGCThreads=NSTW 并行线程数,若可用核数 M < 8 则 N=1,否则默认 N=M*5/8
-XX:ConcGCThreads=N并发阶段并发线程数,默认是 ParallelGCThreads 的 1/4
-XX:InitiatingHeapOccupancyPercent=45老年代 region 占比超过 45% 则触发老年代 GC
-XX:G1HeapRegionSize=N单个 region 大小,1~32MB
-XX:G1NewSizePercent=5, -XX:G1MaxNewSizePercent=60新生代 region 最小占整堆的 5%,最大 60%,超出则触发新生代 GC
-XX:G1HeapWastePercent=5允许浪费的堆内存占比,可回收内存低于 5% 则不进行混合回收
-XX:G1MixedGCLiveThresholdPercent=85老年代存活对象占比超 85%,回收价值低,暂不回收
-XX:G1MixedGCCountTarget=8单次收集中混合回收次数

3.8 内存分配策略

使用 Serial 收集器 -XX:+UseG1GC 演示

1. 对象优先分配在 Eden 区

新对象在 Eden 区分配,空间不足则触发 Minor GC,存活对象拷贝到 To Survivor,若还是内存不足则通过分配担保机制转移到老年区,依旧不足才 OOM

byte[] buf1 = new byte[6 * MB];
byte[] buf2 = new byte[6 * MB]; // 10MB 的 eden 区剩余 4MB,空间不足,触发 minor GC

// java -verbose:gc -Xms20m -Xmx20m -Xmn10m -XX:+PrintGCDetails -XX:+UseSerialGC com.ch03.Allocation
// minor gc 后新生代内存从 6M 降到 0.2M,存活对象移到了老年区,总的堆内存用量依旧是 6MB
[GC (Allocation Failure) [DefNew: 6823K->286K(9216K), 0.002 secs] 6823K->6430K(19456K), 0.002 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
Heap
def new generation total 9216K, used 6513K
eden space 8192K, 76% used // buf2
from space 1024K, 28% used
to space 1024K, 0% used
tenured generation total 10240K, used 6144K
the space 10240K, 60% used // buf1

2. 大对象直接进入老年区

对于 Serial, ParNew,可配置超过阈值 -XX:PretenureSizeThreshold 的大对象(连续内存),直接在老年代中分配,避免触发 minor gc,导致 Eden 和 Survivor 产生大量的内存复制操作

byte[] buf1 = new byte[4 * MB];

// java -verbose:gc -Xms20m -Xmx20m -Xmn10m -XX:+PrintGCDetails -XX:+UseSerialGC
// -XX:PretenureSizeThreshold=3145728 com.ch03.Allocation // 3145728 即 3MB
Heap
def new generation total 9216K, used 843K
eden space 8192K, 10% used
from space 1024K, 0% used
to space 1024K, 0% used
tenured generation total 10240K, used 4096K
the space 10240K, 40% used // buf1

3. 长期存活的对象进入老年代

对象头中 4bit 的 age 字段存储了对象当前 GC 分代年龄,当超过阈值-XX:MaxTenuringThreshold(默认 15,也即 age 字段最大值)后,将晋升到老年代,可搭配-XX:+PrintTenuringDistribution观察分代分布

byte[] buf1 = new byte[MB / 16];
byte[] buf2 = new byte[4 * MB];
byte[] buf3 = new byte[4 * MB]; // 触发 minor gc
buf3 = null;
buf3 = new byte[4 * MB];

// java -verbose:gc -Xms20m -Xmx20m -Xmn10m -XX:+PrintGCDetails -XX:+UseSerialGC
// -XX:MaxTenuringThreshold=1 -XX:+PrintTenuringDistribution com.ch03.Allocation
[GC (Allocation Failure) [DefNew
Desired survivor size 524288 bytes, new threshold 1 (max 1)
- age 1: 359280 bytes, 359280 total
: 4839K->350K(9216K)] 4839K->4446K(19456K), 0.0017247 secs]
// 至此,buf1 熬过了第一次收集,age=1
[GC (Allocation Failure) [DefNew
Desired survivor size 524288 bytes, new threshold 1 (max 1): 4446K->0K(9216K)] 8542K->4438K(19456K)]
Heap
def new generation total 9216K, used 4178K
eden space 8192K, 51% used
from space 1024K, 0% used // buf1 在第二轮收集中被提前晋升
to space 1024K, 0% used
tenured generation total 10240K, used 4438K
the space 10240K, 43% used

4. 分代年龄动态判定

-XX:MaxTenuringThreshold并非晋升的最低硬性门槛,当 Survivor 中同龄对象超 50% 后,大于等于该年龄的对象会被自动晋升,哪怕还没到阈值

5. 空间分配担保

老年代作为 To Survivor 区的担保区域,当 Eden + From Survivor 中存活对象的总大小超出 To Survivor 时,将尝试存入老年代。JDK6 之后,只要老年代的连续空间大于新生代对象的总大小,或之前晋升的平均大小,则只会进行 Minor GC,否则进行 Full GC


ch06. 类文件结构

Class 文件实现语言无关性,JVM 实现平台无关性,参考《Java 虚拟机规范》

一个 Class 文件描述了一个类或接口的明确定义,文件内容是一组以 8 字节为单位的二进制流,各数据项间没有分隔符,超过 8 字节的数据项按 Big-Endian 切分后存储。数据项分两种:

  • 无符号数:描述基本类型;用 u1,u2,u4,u8 分别表示 1,2,4,8 字节长度的无符号数;存储数字值、索引序号、UTF-8 编码值等

  • 表:由无符号数、其他表嵌套构成的复合类型;约定 _info 后缀;存储字段类型、方法签名等

6.1 结构定义

1. 语法

参考文档:The class File Format

ClassFile {
u4 magic; // 魔数
u2 minor_version; // 版本号
u2 major_version;
u2 constant_pool_count; // 常量池
cp_info constant_pool[constant_pool_count-1];
u2 access_flags; // 类访问标记
u2 this_class; // 本类全限定名
u2 super_class; // 单一父类
u2 interfaces_count; // 多个接口
u2 interfaces[interfaces_count];
u2 fields_count; // 字段表
field_info fields[fields_count];
u2 methods_count; // 方法表
method_info methods[methods_count];
u2 attributes_count; // 类属性
attribute_info attributes[attributes_count];
}
  • magic:魔数,简单识别 *.class 文件,值固定为 0xCAFEBABE

  • minor_version, major_version:Class 文件的次、主版本号

  • constant_pool_count:常量池大小+1

  • constant_pool:常量池,索引从 1 开始,0 值被预留表示不引用任何常量池中的任何常量;常量分两类

    • 字面量:如 UTF8 字符串、int、float、long、double 等数字常量

    • 符号引用:类、接口的全限定名、字段名与描述符、方法类型与描述符等
      现有常量共计 17 种,常量间除了都使用u1 tag前缀标识常量类型外,结构互不相同,常见的有:

    • CONSTANT_Utf8_info:保存由 UTF8 编码的字符串

      CONSTANT_Utf8_info {
      u1 tag; // 值为 1
      u2 length; // bytes 数组长度,u2 最大值 65535,即单个字符串字面量不超过 64KB
      u1 bytes[length]; // 长度不定的字节数组
      }
    • CONSTANT_Class_info:表示类或接口的符号引用

      CONSTANT_Class_info {
      u1 tag; // 值为 7
      u2 name_index; // 指向全限定类名的 Utf8_info // 常量间存在层级组合关系
      }
    • CONSTANT_Fieldref_info, CONSTANT_Methodref_info, CONSTANT_NameAndType_info:成员变量、成员方法及其类型描述符

      CONSTANT_Fieldref_info {
      u1 tag; // 值为 9
      u2 class_index; // 所属类
      u2 name_and_type_index; // 字段的名称、类型描述符
      }
      CONSTANT_Methodref_info {
      u1 tag; // 值为 10
      u2 class_index; // 所属类
      u2 name_and_type_index; // 方法的名称、签名描述符
      }
      CONSTANT_NameAndType_info {
      u1 tag; // 值为 12
      u2 name_index; // 字段或方法的名称
      u2 descriptor_index; // 类型描述符
      }

      如上只列举了其中 5 种常量的结构,可见常量间通过组合的方式,来描述层级关系

  • access_flags:类的访问标记,有 16bit,每个标记对应一个位,比如ACC_PUBLIC对应0x0001,表示类被 public 修饰;其他 8 个标记参考 Opcodes.ACC_XXX

  • this_class, super_class:指向本类、唯一父类的 Class_info 符号常量

  • interface_count, interfaces:描述此类实现的多个接口信息

  • fields_count, fields:字段表;描述类字段、成员变量的个数及详细信息

    field_info {
    u2 access_flags; // 作用域、static,final,volatile 等访问标记
    u2 name_index; // 字段名
    u2 descriptor_index; // 类型描述符
    u2 attributes_count; // 字段的属性表
    attribute_info attributes[attributes_count];
    }

    类型描述符简化描述了字段的数据类型、方法的参数列表及返回值,与 Java 中的类型对于关系如下:

    • 基本类型:Z:boolean, B:byte, C:char, S:short, I:int, F:float, D:double, J:long

    • void 及引用类型:V:void

    • 引用类型:L:_,类名中的 . 替换为 /,添加 ; 分隔符,如 Object 类描述为Ljava/lang/Object;

    • 数组类型:每一维用一个前置 [ 表示
      示例:boolean regionMatch(int, String, int, int)对应描述符为 (ILjava/lang/String;II)Z

  • methods_count, methods:方法表;完整描述各成员方法的修饰符、参数列表、返回值等签名信息

    method_info {
    u2 access_flags; // 访问标记
    u2 name_index; // 方法名
    u2 descriptor_index; // 方法描述符
    u2 attributes_count; // 方法属性表
    attribute_info attributes[attributes_count];
    }

    字段表、方法表都可以带多个属性表,如常量字段表、方法字节码指令表、方法异常表等。属性模板:

    attribute_info {
    u2 attribute_name_index; // 属性名
    u4 attribute_length; // 属性数据长度
    u1 info[attribute_length]; // 其他字段,各属性的结构不同
    }

    属性有 20+ 种,此处只记录常见的三种

    • Code 属性:存储方法编译后的字节码指令

      Code_attribute {
      u2 attribute_name_index; // 属性名,指向的 Utf8_info 值固定为 "Code"
      u4 attribute_length; // 剩下字节长度
      u2 max_stack; // 操作数栈最大深度,对于此方法的栈帧中操作数栈的深度
      u2 max_locals; // 以 slot 变量槽为单位的局部变量表大小,存储隐藏参数 this,实参列表,catch 参数,局部变量等
      u4 code_length; // 字节码指令总长度
      u1 code[code_length]; // JVM 指令集大小 200+,单个指令的编号用 u1 描述
      u2 exception_table_length; // 异常表,描述方法内各指令区间产生的异常及其 handler 地址
      { u2 start_pc; // catch_type 类型的异常,会在 [start_pc, end_pc) 指令范围内抛出
      u2 end_pc;
      u2 handler_pc; // 若抛出此异常,则 goto 到 handler_pc 处执行
      u2 catch_type;
      } exception_table[exception_table_length];
      u2 attributes_count; // Code 属性自己的属性
      attribute_info attributes[attributes_count];
      }
    • LineNumberTable 属性:记录 Java 源码行号与字节码行号的对应关系,用于抛异常时显示堆栈对应的行号等信息。可作为 Code 属性的子属性

      LineNumberTable_attribute {
      u2 attribute_name_index; u4 attribute_length;
      u2 line_number_table_length;
      { u2 start_pc; // 字节码指令区间开始位置
      u2 line_number; // 对应的源码行号
      } line_number_table[line_number_table_length];
      }
    • LocalVariableTable 属性:记录 Java 方法中局部变量的变量名,与栈帧局部变量表中的变量的对应关系,用于保留各方法有意义的变量名称

      LocalVariableTable_attribute {
      u2 attribute_name_index; u4 attribute_length;
      u2 local_variable_table_length;
      { u2 start_pc; // 局部变量生命周期开始的字节码偏移量
      u2 length; // 向后生命周期覆盖的字节码长度
      u2 name_index; // 变量名
      u2 descriptor_index; // 类型描述符
      u2 index; // 对应的局部变量表中的 slot 索引
      } local_variable_table[local_variable_table_length];
      }

      其他属性直接参考 JVM 文档


2. 示例

源码:com/cls/Structure.java

package com.cls;

public class Structure {
public static void main(String[] args) {
System.out.println("hello world");
}
}

javac -g:lines com/cls/Structure.java 编译后,参考 javap 反编译得到的正确结果,od -x --endian=big Structure.class 得出 class 文件内容的十六进制表示,解读如下:

cafe babe # 1. u4 魔数,标识 class 文件类型
0000 0034 # 2. u2,u2 版本号,52 JDK8

# 3. 常量池
---1---
001f # u2 constant_pool_count,31 项(从 1 开始计数,0 预留)
0a # u1 tag,10,Methoddef_info,成员方法结构
0006 # u2 index,6,所属类的 Class_info 在常量池中的编号 ## java/lang/Object
0011 # u2 index,17,此方法 NameAndType 编号 ## <init>:()V

---2---
09 # 9,Fileddef_info,成员变量结构
0012 # u2 index,18,所属类 Class_info 编号 ## java/lang/System
0013 # u2 index,19,此字段 NameAndType 编号 ## out:Ljava/io/PrintStream

---3---
08 # 8,String_info,字符串
0014 # u2 index,20,字面量编号 ## hello world

---4---
0a
0015 # 21 ## java/io/PrintStream
0016 # 22 ## println:(Ljava/lang/String;)V

---5---
07 # Class_info,全限定类名
0017 # u2 index,23,字面量编号 ## com/cls/Structure

---6---
07 # 7,Class_info,类引用
0018 # 24 ## java/lang/Object

---7---
01 # Utf8_info,UTF8 编码的字符串
0006 # u2 length,6,字符串长度
3c 69 6e 69 74 3e # 字面量值 ## "<init>"

---8-16---
01 0003 282956 ## "()V"
01 0004 436f6465 ## "Code"
01 000f 4c696e654e756d6265725461626c65 ## "LineNumberTable"
01 0004 6d61696e ## "main"
01 0016 285b4c6a6176612f6c616e672f537472696e673b2956 ## "([Ljava/lang/String;)V"
01 0010 4d6574686f64506172616d6574657273 ## "MethodParameters"
01 0004 61726773 ## "args"
01 000a 536f7572636546696c65 ## "SourceFile"
01 000e 5374727563747572652e6a617661 ## "Structure.java"

---17---
0c # 12,NameAndType,名字及类型描述符
0007 # u2 index,7,字段或方法名字面量编号 ## <init>
0008 # u2 index,8,字段或方法结构编号 ## ()V

---18---
07 0019 # 25 ## java/lang/System

---19---
0c
001a 001b # 26:27 ## out:Ljava/io/PrintStream;

---20---
01 000b 68656c6c6f20776f726c64 ## "hello world"

---21--
07 001c # 28 ## java/io/PrintStream

---22--
0c
001d 001e # 29:30 ## println:(Ljava/lang/String;)V

---23-31---
01 0011 636f6d2f636c732f537472756374757265 ## "com/cls/Structure"
01 0010 6a6176612f6c616e672f4f626a656374 ## "java/lang/Object "
01 0010 6a6176 612f 6c61 6e67 2f53 7973 7465 6d ## "java/lang/System"
01 0003 6f7574 ## "out"
01 0015 4c6a6176612f696f2f5072696e7453747265616d3b ## "Ljava/io/PrintStream;"
01 0013 6a6176612f696f2f5072696e7453747265616d ## "java/io/PrintStream"
01 0007 7072696e746c6e ## "println"
01 0015 284c6a6176612f6c616e672f537472696e673b2956 ## "(Ljava/lang/String;)V"

0021 # 4. u2,access_flags ## ACC_PUBLIC | ACC_SUPER
0005 # 5. u2, this_class,5 ## --5.Class_info--> com/cls/Structure
0006 # 6. u2, super_class, 6 ## --6.Class_info--> java/lang/Object
0000 # 7. u2, interface_count, 0
0000 # 8. u2, fields_count, 0

0002 # 9. methods count, 2
# 方法一
0001 # u2, access_flags, ACC_PUBLIC
0007 # u2, name_index, 7 ## <init>
0008 # u2, descriptor_index, 8 ## ()V
0001 # u2, attribute_count, 1
0009 # u2, attribute_name_index, 9 ## Code 属性
0000 001d # u4, attribute_length, 30
0001 # u2, max_stack, 1
0001 # u2, max_locals, 1
0000 0005 # u4, code_array_length, 5
2a # u1, aload_0 ## 将第 0 个 slot 中的变量 this 入栈
b7 0001 # u1, invokespecial ## 执行从 Object 继承的 <init>
b1 # u1, return ## 返回 void
0000 # u2, exception_table_length, 0 ## exception table 为空,无异常
0001 # u2, attributes_count, 1 ## Code 属性本身的子属性
000a # 10 ## LineNumberTable 属性
0000 0006 # 6
0001 # u2, line_number_table_length, 1
0000 # u2, start_pc, 0
0003 # u2, line_number, 3
# 方法二
0009 # access_flags ## ACC_PIBLIC | ACC_STATIC
000b # name_index, 11 ## main
000c # descriptor_index, 12 ## ([Ljava/lang/String;)V
0002 # attribute_count, 2
0009 # attribute_name_index, 9 ## Code
0000 0025 # attribute_length, 37
0002 # max_stack, 2
0001 # max_locals, 1
0000 0009 # code_array_length, 9
b2 0002 # getstatic, 2 ## Field: java/lang/System.out:Ljava/io/PrintStream; // 加载静态对象变量
12 03 # ldc, 3 ## String: "hello world" // 将常量参数入栈
b6 0004 # invokevirtual, 4 ## Method: java/io/PrintStream.println:(Ljava/lang/String;)V // 执行方法
b1 # return
0000 # exception_table_length, 0
0001 # attributes_count, 1
000a # 10 ## LineNumberTable
0000 000a # 10
0002 # line_number_table_length, 2
0000 0005 # 0 -> 5
0008 0006 # 8 -> 6

6.2 字节码指令

JVM 面向操作数栈(operand stack)设计了指令集,每个指令由 1 字节的操作码(opcode)表示,其后跟随 0 个或多个操作数(operand),指令集列表参考 Java bytecode instruction listings

  • 大部分与数据类型相关的指令,其操作码符号都会带类型前缀,如 i 前缀表示操作 int,剩余对应关系为 b:byte, c:char, s:short, f:float, d:double, l:long, a:reference

  • 由于指令集大小有限(256个),故 boolean, byte, char, short 会被转为int运算

字节码可大致分为六类:

  • 加载和存储指令:将变量从局部变量表 slot 加载到操作数栈的栈顶,反向则是存储

    // 将 slot 0,1,2,3,N 加载到栈顶,T 表示类型简记前缀,可取 i,l,f,d,a
    Tload_0, Tload_1, Tload_2, Tload_3, Tload n
    // 将栈顶数据写回指定的 slot
    Tstore_0, Tstore_1, Tstore_2, Tstore_3, Tstore n
    // 将不同范围的常量值加载到栈顶,由于 0~5 常量过于常用,有单独对应的指令,ldc 则加载普通常量
    bipush, sipush, Tconst_[0,1,2,3,4,5], aconst_null, ldc
  • 运算指令

    Tadd, Tsub, Tmul, Tdiv, Trem // 算术运算:加减乘除,取余
    Tneg, Tor, Tand, Txor // 位运算:取反、或、与、异或
    dcmpg, dcmpl, fcmpg, fcmpl, lcmp // 比较运算:后缀 g 即 greater, l 即 less than
    iinc // 局部自增运算,与 iload 搭配使用
  • 强制类型转换指令:窄化转换为 T 类型(长度为 N)时,会直接丢弃除了低 N 位外的其他位,可能会导致数据溢出、正负号不确定,浮点数转整型则会丢失精度

    i2b // int -> byte
    i2c, i2s; l2i, f2i, d2i; d2l, f2l; d2f
  • 对象创建与访问指令:类实例、数组都是对象,存储结构不同,创建和访问指令有所区别

    new // 创建类实例
    newarray, annewarray, multianewarry // 创建基本类型数组、引用类型数组、多维引用类型数组
    getfield, putfield; getstatic, putstatic // 读写类实例字段;读写类静态字段
    Taload, Tastore; arraylength // 读写数组元素;计算数组长度
    instanceof; checkcast // 校验对象是否为类实例;执行强制转换
  • 操作数栈管理指令

    pop, pop2 // 弹出栈顶 1,2 元素
    dup, dup2; swap // 复制栈顶 1,2 个元素并重新入栈;交换栈顶两个元素
  • 控制转移指令:判断条件成立,则跳转到指定的指令行(修改 PC 指向)

    if_<icmpeq,icmpne;icmplt,icmple;icmpgt,icmpge;acmpe,acmpne> // 整型比较,引用相等性判断
    if<eq,lt,le,gt,ge,null,nonnull> // 搭配其他类型的比较运算指令使用
  • 方法调用与返回指令

    invokevirtual // 根据对象的实际类型进行分派,调用对应的方法(比如继承后方法重写)
    invokespecial // 调用特殊方法,如 <cint>()V, <init>()V 等初始化方法、私有方法、父类方法
    invokestatic // 调用类的静态方法
    invokeinterface // 调用接口方法(实现接口的类对象,但被声明为接口类型,调用方法)
    invokedynamic // TODO
    Treturn, return // 返回指定类型,返回 void
  • 异常处理指令:athrow 抛出异常,异常处理则由 exception_table 描述

  • 同步指令:synchronized 对象锁由 monitorenter, monitorexit 搭配对象的 monitor 锁共同实现


ch07. 类加载

7.1 类加载过程

1. 加载

原理:委托 ClassLoader 读取 Class 二进制字节流,载入到方法区内存,并在堆内存中生成对应的java.lang.Class对象相互引用

2. 验证

校验字节流确保符合 Class 文件格式,执行语义分析确保符合 Java 语法,校验字节码指令合法性

3. 准备

在堆中分配类变量(static)内存并初始化为零值,主义还没到执行 putstatic 指令赋值的初始化阶段,但静态常量属性除外:

public class ClassX {
final static int n = 2; // 常量的值在编译期就已知,准备阶段完成赋值,值存储在 ConstantValue
final static String str = "str"; // 字符串静态常量同理
}

static final java.lang.String str;
descriptor: Ljava/lang/String;
flags: ACC_STATIC, ACC_FINAL
ConstantValue: String str

4. 解析

将常量池中的符号引用(Class_info, Fieldref_info, Methodref_info)替换为直接引用(内存地址)

5. 初始化

javac 会从上到下合并类中 static 变量赋值、static 语句块,生成类构造器<cinit>()V,在初始化阶段执行,此方法的执行由 JVM 保证线程安全;注意 JVM 规定有且仅有的,会立即触发对类初始化的六种 case

public class ClassX {
static {
println("main class ClassX init"); // 1. main() 所在的主类,总是先被初始化
}

public static void main(String[] args) throws Exception {
// 首次会触发类的初始化
// SubX b = new SubX(); // new 对象 // 2. new, getsatic, putstatic, invokestatic 指令
// println(SuperX.a); // 读写类的 static 变量,或调用 static 方法
// println(SubX.c); // 3. 子类初始化,会触发父类初始化
// println(SubX.a); // 子类访问父类的静态变量,只会触发父类初始化

// 不会触发类的初始化
// println(SubX.b); // 1. 访问类的静态常量(基本类型、字符串字面量)
// println(SubX.class); // 2. 访问类对象
// println(new SubX[2]); // 3. 创建类的数组
}
}

class SuperX {
static int a = 0;
static {
println("class SuperX initiated");
}
}

class SubX extends SuperX {
final static double b = 0.1;
static boolean c = false;
static {
println("class SubX initiated");
}
}

7.2 类加载器

层级关系

双亲委派机制

  • 原理:一个类加载器收到加载某个类的请求时,会先委派上层的父类加载器去加载,逐层向上,当父类加载器逐层向下反馈都无法加载此类后,该类加载器才会尝试自己加载;此模型保证了,诸如 rt.jar 中的java.lang.Object类,不论在底层哪种类加载器中都一定是被 Bootstrap 类加载器加载, JVM 中仅此一份,保证了一致性

  • 实现

    // java/lang/ClassLoader
    protected Class<?> loadClass(String name, boolean resolve) throws ClassNotFoundException {
    synchronized (getClassLoadingLock(name)) {
    // 1. 先检查自己的加载器是否已加载此类
    Class<?> c = findLoadedClass(name);
    if (c == null) {
    long t0 = System.nanoTime();
    try {
    if (parent != null) {
    // 2. 还有上层则委派给上层去加载
    c = parent.loadClass(name, false);
    } else {
    // 3. 如果没有上级,则委派给 Bootstrap 加载
    c = findBootstrapClassOrNull(name);
    }
    } catch (ClassNotFoundException e) {
    // 类不存在
    }

    if (c == null) {
    // 4. 到自己的 classpath 中查找类,用户自定义 ClassLoader 自定义了查找规则
    long t1 = System.nanoTime();
    c = findClass(name);
    }
    }
    if (resolve) {
    resolveClass(c);
    }
    return c;
    }
    }

ch08. 字节码执行引擎

8.1 运行时栈帧结构

public static void main(String[] args) {
int a = 1008611;
int b = ++a;
}

对应运行时栈帧结构:

  • 局部变量表:大小在编译期确定,用于存放实参和局部变量,以大小为 32 bit 的变量槽为最小单位

    • long, double 类型被切分为 2 个 slot 同时读写(单线程操作,无线程安全问题)

    • 类对象调用方法时,slot 0 固定为当前对象的引用,即this隐式实参

    • 变量槽有重用优化,当 pc 指令超出某个槽中的变量的作用域时,该槽会被其他变量重用

      public static void main(String[] args) {
      {
      byte[] buf = new byte[10 * 1024 * 1024];
      }
      System.gc(); // buf 还在局部变量表的 slot 0 中,作为 GC Root 无法被回收
      // int v = 0; // 变量 v 重用 slot 0,gc 生效
      // System.gc();
  • 操作数栈:最大深度在编译期确定,与局部变量表配合入栈、执行指令、出栈来执行字节码指令

  • 返回地址:遇到return 族指令则正常调用完成,发生异常但异常表中没有对应的 handler 则异常调用完成;正常退出到上层方法后,若有返回值则压入栈,并将程序计数器恢复到方法调用指令的下一条指令


8.2 方法调用

1. 虚方法、非虚方法

非虚方法:编译期可知(程序运行前就唯一确定)、且运行期不可变的方法,在类加载阶段就会将方法的符号引用解析为直接引用。有 5 种:

  • 静态方法(与类唯一关联):invokestatic调用

  • 私有方法(外部不可访问)、构造器方法、父类方法:invokespecial调用

  • final 方法(无法被继承):由invokevirtual调用(历史原因)

public class StaticResolution {
public static void doFunc() {
System.out.println("do func...");
}
public static void main(String[] args) {
StaticResolution.doFunc();
}
}

stack=0, locals=1, args_size=1 // 静态方法的调用版本,在编译时就以常量的形式,存入字节码的参数
0: invokestatic #5 // Method doFunc:()V
3: return

虚方法:需在运行时动态确定直接引用的方法,由invokevirtual, invokeinterface调用

2. 静态分派、动态分派

背景:方法可被重载(参数类型不同,或数量不同)、可被重写(子类继承后覆盖)

分派:对象可声明为类、父类、实现的接口等类型,当对象作为实参或调用方法时,需根据其静态类型或实际类型,才能确定要调用的方法的版本,进而确定其直接引用。此过程即方法的分派

reference 变量的 2 种类型

  • 静态类型:变量被声明的类型,不会改变,编译期可知

  • 实际类型:变量指向的对象可被替换,运行时随时可能修改

静态分派

  • 原理:方法重载时,依赖参数的静态类型,来确定要使用哪个重载版本的方法

  • 特点:发生在编译阶段,由 javac 确定类型“匹配度最高的”重载版本,来作为invokevirtual的参数

public class StaticDispatch {
static abstract class Human {}
static class Man extends Human {}
static class Woman extends Human { }

public void f(Human human) {System.out.println("f(Human)");}
public void f(Man man) {System.out.println("f(Man)");}
public void f(Woman woman) {System.out.println("f(Woman)");}

public static void main(String[] args) {
Human man = new Man(); // 静态类型都是 Human
Human woman = new Woman(); // 实际类型分别为 Man, Woman
StaticDispatch sd = new StaticDispatch();
sd.f(man); // f(Human) // invokevirtual #13 // Method f:(Lcom/ch08/StaticDispatch$Human;)V
sd.f(woman); // f(Human) // 编译期就已确定重载版本,写入字节码中
}
}

动态分派

  • 原理:方法重写时,依赖 Receiver 对象的实际类型,来确定要使用哪个类版本的方法

  • 特点:发生在运行时,依赖invokevirtual指令来确定调用方法的版本,进而实现多态,解析流程为

    注:类的方法查找是高频操作,JVM 会在方法区中为类建一张虚方法表 vtable,以实现方法的快速查找

    public class DynamicDispatch {
    static abstract class Human {
    protected abstract void f();
    }

    static class Man extends Human {
    @Override
    protected void f() {
    System.out.println("Man f()");
    }
    }

    static class Woman extends Human {
    @Override
    protected void f() {
    System.out.println("Woman f()");
    }
    }

    public static void main(String[] args) {
    Human man = new Man(); // 虽然静态类型都是 Human
    Human woman = new Woman();
    man.f(); // Man f() // invokevirtual #6 // Method com/ch08/DynamicDispatch$Human.f:()V
    woman.f(); // Woman f() // 虽然字节码指令的参数,都是静态类型方法的符号引用
    man = new Woman();
    man.f(); // Woman f() // 但 invokevirtual 会根据 Receiver 实际类型,在运行时解析到实际类的直接引用
    }
    }

    注意,类的字段读写指令getfield, putfield没有invokevirtual的动态分派机制,即子类的同名字段会直接覆盖父类的字段。示例:

    public class FieldHasNoPolymorphic {
    static class Father {
    public int money = 1;
    public Father() {
    money = 2;
    showMoney();
    }
    public void showMoney() { System.out.println("Father, money = " + money); }
    }

    static class Son extends Father {
    public int money = 3; // 子类字段在类加载的准备阶段被赋零值
    public Son() { // 子类构造器第一行默认隐藏调用 super()
    money = 4;
    showMoney();
    }
    public void showMoney() { System.out.println("Son, money = " + money); }
    }

    public static void main(String[] args) {
    Father guy = new Son();
    System.out.println("guy, money = " + guy.money);
    }
    }

    // Son, money = 0 // Father 类构造器执行,动态分派执行了 Son::showMoney()
    // Son, money = 4 // Son 类构造器中访问最新的、自己的 money 字段
    // guy, money = 2 // 字段的读写没有动态分派,静态类型是谁,就访问谁的字段

3. 单分派、多分派

方法的 Receiver,与方法的参数,都是方法的宗量,根据一个宗量来选择目标方法称为单分派,需要多个宗量才能确定方法的叫多分派

  • 静态分派机制会让编译器在编译阶段,对重载的多个方法,会选出参数匹配度最高的作为目标方法

  • 动态分派机制在运行时,依赖 Receiver 实际类型,配合invokevirtual定位唯一的实例方法作为目标方法

综上两点,Java 是静态多分派、动态单分派的语言


注明:第 10,11 章讲 Java 的前后端编译,学习了自动装箱等常见语法糖的字节码实现,其余部分待有空搭配龙书一起学;第 12,13 章内容与《Java Concurrency In Practice》等书重合度较高,此处不再赘述


总结

学习《深入理解 JVM 3ed》,初步掌握了 JVM 内存区域的划分模型、GC 算法理论及常见回收器原理、Class 文件结构中各数据项解释、类加载流程、方法的执行与分派等五大方面的知识,收获颇丰。不过大部分都是理论,若有机会还是要研究下 openjdk 的源码实现 :(


原文地址::https://yinzige.com/2020/03/08/understanding-jvm-3ed/


end










公众号(zhisheng)里回复 面经、ClickHouse、ES、Flink、 Spring、Java、Kafka、监控 等关键字可以查看更多关键字对应的文章。

点个赞+在看,少个 bug 👇

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存