EEGmanylabs project
代表EEGmanylabs项目:
EEG研究结果的可靠性和可重复性如何? #EEGmanylabs是一个雄心勃勃的项目,旨在建立全球实验室网络,以评估该领域一些最重要和最有影响力的实验结果的可信度。
为什么我们需要#EEGmanylabs?
认知神经科学研究很昂贵。因此,已发表的研究倾向于测试具有高度多维数据集的小样本中的新假设。虽然可以理解,但这种方法具有产生假阳性的高潜力,并且新颖的,令人兴奋的发现的可复制性在很大程度上未经测试。 #EEGmanylabs计划旨在通过汇集分布式实验室的资源来重新审视这一点,以前所未有的统计能力重新审视现有的脑电图假设。
为什么#EEGmanylabs需要你?
为了使这个项目取得成功,我们需要尽可能多的实验室输入。我们现在正在确定社区认为可以复制的有影响力的研究。在您的帮助下,#EEGmanylabs将创建历史上最大的开放式访问脑电数据集,并在此过程中提供坚实的基础,支持认知神经科学研究的未来。
想成为这个项目的一部分?加入我们:http://tinyurl.com/joineegmanylabs
有一项你想要复制的研究吗?请在此处提出建议:https://tinyurl.com/eegmanylabs
On behalf of the EEGmanylabs project:
How reliable and reproducible are findings from EEG research? #EEGmanylabs is an ambitious project creating a global network of labs to assess the credibility of results of some of the most important and influential experiments in the field.
Why do we need #EEGmanylabs?
Cognitive neuroscience research is expensive. As a result, published research tends to test novel hypotheses in small samples with highly multidimensional data-sets. While understandable, this approach has high potential for producing false positives and the replicability of novel, exciting findings goes largely untested. The #EEGmanylabs initiative aims to change this by pooling resources across distributed laboratories to revisit existing EEG hypotheses with unprecedented statistical power.
Why does #EEGmanylabs need you?
To make this project a success, we need input from as many labs as possible. We are now in the process of identifying influential studies that the community feels are ripe for replication. With your help, #EEGmanylabs will create the largest open access EEG dataset in history and in doing so, provide a robust foundation that underpins the future of cognitive neuroscience research.
Want to be a part of this project? Join us here: http://tinyurl.com/joineegmanylabs
Have a study that you would like to see replicated? Please suggest it here: https://tinyurl.com/eegmanylabs
已建立的表单
以上资源来源邮件,文章仅限学习使用,不用于商业行为,若有侵权及疑问,请后台留言!
52brain,Connect Young Brains.
网址需要访问谷歌表单,可参看次条谷歌学术助手
推荐阅读: