查看原文
其他

机票垂直搜索引擎之性能优化

张辉清 技术琐话 2019-04-21


行业背景与垂直搜索

从2011年到2016年,无论国内,还是国际,整体趋势都是机票价格便宜了,坐飞机的人也越来越多。特别是国际机票,这五年里机票价格下降了30%,客运量增长了140%。 


乘客越来越多,购买机票的渠道有哪些呢?现在主要有三个:网络平台、代售点和航司官网。像携程、去哪儿、飞猪、同程等,都是主流的网络购票平台;像旅行社这类代售点,是旅行团的主要购票渠道;同时大部分航空公司的官网也可以购票,而且价格相对较低。总体来说,网络平台是最大的销售渠道,占比为76%。


为什么网络平台占有这么大的份额呢?主要原因是机票垂直搜索引擎是主要的用户流量入口,用户一般是先比价,然后去预订,一个好的机票搜索引擎查询的产品丰富、价格便宜,而且响应速度快,运价也准,这些特性在技术方面实现好并不容易。 



主要问题与解决方案

机票查询要快、准、低。快是指查询快,能够提供一个良好的用户体验;准是指运价准,可以保证出票的成功率;低是指票价低,能够吸引更多的用户。如果票价要有优势,就要有大量产品,产品数据多了查询就慢;如果查询要快,就必须要有缓存;数据缓存了,运价就可能不准。这三者是矛盾的,类似于CAP原则,具体示意图如下。 

对于以上问题,怎么解决呢?通用的三个技术方案有:用DB+Redis平衡响应速度、数据实时性和查询成本;用削峰填谷的MQ来处理高并发;将业务服务化、模块解耦。这些只是通用的技术点,并没有什么难度,我们这里重点介绍与最终结果密切相关的四个模块:静态数据、缓存策略、实时查询和政策匹配。 


(1)静态数据:能静态处理的数据尽量静态化,存储到本地,可以是数据库或缓存,以方便快速地查询,如航班信息、运价数据和政策数据等。 

(2)缓存策略:从中航信拿到运价数据之后,进行热冷门数据分类,数据永不过期但持续更新,自主控制数据的更新频率。 

(3)实时查询:多渠道多供应实时获取远端数据,多数据源查询速度会变慢,远端服务不可控。解决方案是三段超时,即前端用户超时、中端运营超时和后端供应超时。 

(4)政策匹配:大量的产品数据和大量的业务规则不可能都提供给用户,需要通过一定的算法进行匹配过滤、排序等。 



静态技术与任务打底

机票查询的静态数据主要有城市、机型、航司、运价数据等,这里重点介绍较为复杂的运价数据。运价数据的获取虽然间隔时间较长,但数据量大且更新频次不同。运价数据是由中航信统一提供的,有两种途径:黑屏查询和IBE接口,将获取的数据保存到数据库和缓存中,用户查询的时候直接从缓存中获取,同时会按照一定的缓存策略来更新。 


最初我们设计了两套方案来打底运价数据,两个方案各有优劣。方案1是先预加载所有的运价数据,然后全部保存到数据库和缓存中,在航班查询时通过缓存策略进行相应地更新;方案2是把运价数据根据航线查询频率分为热门和冷门数据,然后每天凌晨对热门数据预加载,并在航班查询的时候对冷门数据进行更新。可以看出,方案1能保证数据的完整性和实时性,但预加载用时太长;方案2能控制预加载用时,但热门数据的实时性会从早到晚逐渐降低。两个方案中都需要实时更新,在考虑数据实时性的同时,还要考虑获取数据的费用,平衡好两者才是一个实用的方案。 


综合对比之后,我们采用了方案1,具体实现如下图所示。


首先通过Job对运价数据进行初始化,然后以任务消息的方式发送给MQ,MQ里的消息会被后台服务自动消费,执行消息队列里的任务,把运价数据保存到数据库和缓存中。数据预加载之后,用户在前台查询时,如果缓存里面没有数据,或者查到的缓存数据是过期的,那么系统会自动发一条任务消息给MQ,或者人工配置指定的航线定时更新,Job也会自动发送任务消息给MQ,前台和后台的消息被服务消费以实现数据的更新。用户的不断请求和后台指定的任务保证了数据的持续更新,时间越久,数据的准确性越高,用户查询的命中率也会越来越高。 



缓存策略与数据一致

上面说到运价数据同时存储在数据库和缓存中,为什么有了缓存还要数据库呢?存储到数据库是为了方便数据的多维查询和管理,包括对缓存的进一步干预。数据库查询的功能强大,但速度慢,缓存的性能好,但从缓存里获取的数据会有不准确的问题。怎么才能做到查询快而且数据准呢?我们的解决方法是缓存永不失效、数据分类、自主控制更新频率,以实现运价数据的又快又准。 


根据航线查询的频率,将可以分成热门数据、冷门数据和没有数据,航班多、查询多的是热门数据,航班少、查询少的是冷门数据,查询不到就是没有数据。在预加载或更新运价数据时,将缓存设置为一个较长时间或永不过期,然后在前台访问时,不同数据类型采用不同的更新策略,具体如下图所示。 


  • 热门航线查询,在缓存中获取数据,数据中有一个自己的缓存时间字段,然后根据这个时间来分别进行处理。 

1小时之内更新的:新鲜度较高,可以直接用; 

1-6小时之内更新的:预警n次,第n+1次命中时则异步更新运价; 

6小时之外更新的:新鲜度太低,异步更新运价。 


  • 冷门航线查询与热门航线一样,只是不预加载且缓存时间稍长。 

12个小时之内更新的:新鲜度较高,可以直接用; 

12-48个小时之内更新的:预警n次,第n+1次命中时则异步更新运价; 

48个小时之外更新的:新鲜度太低,异步更新运价; 

缓存没有数据时,直接获取最新运价,同时更新数据库和缓存。 


无论预警后更新,还是直接更新,都是先把缓存中的数据返回给用户,同时异步更新数据库和缓存。虽然存在数据查询不准确的概率,但被用户再次查询时就准确了。查询到的数据即便不准确,在后继的航班预订时也会进行二次的验舱验价,运价数据和库存数据会再次更新。用户不断地查询,数据不断地更新,查询命中率就会越来越高,并且用得人越多情况会越好,会逐步趋近于n个9。 



实时查询与三段超时

能静态化的数据要尽量静态化,但远端数据的实时查询还是必不可少的。实时查询如何做到又快又好呢?特别是多数据源、多供应商的实时查询场景。我们的国际机票查询就是这样的,前台页面点击查询时实时调用供应商接口,早期我们仅调用一个供应接口,产品比较单一,数据不够丰富。后面引入了多供应商,产品变丰富了,也有了低价、但同时带来了很多新问题,比如供应端接口需要20~30秒,但前端客户只能接受8秒以内,怎么办?提高供应数据门槛?但这不是核心竞争。还有查询速度变慢、外部数据源不可控、数据格式多样等问题。 


对于以上问题,我们的解决办法是三段超时,所谓三段,即供应端、运营端和客户端。前端满足客人、中间满足运营控制策略、后端满足供应商,三方都要满意,这样才能使产品更丰富、价格更低、运营策略更灵活、用户响应更及时。三段超时的时间可以根据具体场景进行配置,具体如下图所示。 


供应端超时:供应端是后端,是指提供数据源的一方,供应端存在的问题就是外部不可控。供应端处于数据来源的底端,解决办法是尽量加大供应端的超时时间限制。我们对请求供应接口的最大HTTP超时时间设置为45秒,这个值可以满足绝大部分情况。 


运营端超时:运营端是中间端,获取供应商的数据之后,做包装转换、去重、政策匹配等业务处理。我们先统计每一个供应接口的请求时间,确认供应接口数据的质量和优先级。比如A供应数据的质量相比B和C供应数据的质量要高,那么A的请求级别可以设置得高一些。我们优先考虑获取A供应的数据,如果A的数据在8秒内就返回,而B和C的超过这个时间,那么此时在前台就只把A的数据返回给客户。对于BC的数据,由于在HTTP请求时我们采用异步并设置了较大的供应端超时,所以它会在A返回之后,继续异步请求并将返回的数据保存到缓存中,以供用户下次或其他用户使用。当我们获取了多供应商的产品数据后,这时会有一定重复的数据,需要进行规范化处理,将不同数据格式转换成统一标准,然后去重并选取最优,最后根据运营策略进行政策匹配等。 


客户端超时:客户端是前端,需要处理最终展示和不同终端用户的不同需求。客户端采用多线程异步读取,这样不会影响主线程的速度,同时并发请求,提升响应速度和用户体验。这里的主线程请求时间可以理解为前台终端设备需要等待的时间,比如APP要求8秒内返回,那就设置为8秒;如果PC端B2B白屏网页查询,客户可以等待时间为25秒,那么就设置为25秒。客户端的超时时间要大于或等于所有的运营端超时时间,例如客户端超时是25秒,那么运营端线程A的超时时间最大可以为25秒,如果线程A的绝大部分航线获取时间是18秒,那么线程B和C的超时时间最好不要超过18秒,这里的用户体验要综合考虑概率问题。 



政策匹配与算法优化 

弄来这么多产品,不可能都提供给客人,需要根据运营规则来进行匹配。机票政策就是机票产品的运营控制策略,如下图所示,包括政策类型、客户类型、航程类型、乘客类型、航司、航班、舱位、城市、日期、返点 、定额、Office号等多种属性。 



为什么有这么多属性呢?因为机票产品的运营规则很复杂,而这种规则的复杂性,直接导致在航班查询的时候,机票政策的匹配也很复杂。对于这种大数据、复杂业务规则的数据处理,需要有一套专门的政策匹配算法,具体如下: 


第一步是直接从数据库查政策,在前端查询的时候,根据查询的条件,如出发到达城市、日期等,从数据库中大范围地获取政策数据,并把这些数据放到内存中。第二步是在内存中对每个产品进行政策匹配即过滤,先将每一个属性转化为业务规则如限制城市、排除供应商、航司指定供应商等,一个属性一个类,采用统一的接口,然后增加到政策过滤器中。产品与政策的匹配过程就像水流过过滤网一样,把最优政策应用到产品上如调整价格。这个过程有些复杂,为此我们编写了一套自己的政策过滤器PolicyFilter框架。第三步是按照政策返点高低进行排序。第四步是将最优政策返回给前台。以下是部分核心代码的演示:



小结

机票垂直搜索性能优化不仅适合于机票行业,也适合于其他垂直行业,在垂直搜索引擎方面有一定的通用性,只要它存在:远端数据获取、静态数据、缓存更新、规则匹配、多数据源等问题,都是类似的解决方案。垂直搜索主要有四把“刷子”。第一把刷子是静态数据与任务打底。第二把刷子是缓存与更新,保持数据的新鲜度,不仅要快,还要准。第三把刷子是实时查询与三段超时,多供应商多数据源,供应商要20秒,客户只能接受3秒,怎么办?解决办法是三段超时。第四刷子是政策匹配,好不容易弄来这么多产品,不可能都直接显示给客人,需要根据运营规则进行匹配。每一个具体的技术可能并不复杂,但把它们综合起来,解决具体的实际问题,为公司为行业带来价值,并不是一件容易的事。技术的核心价值在于技术的应用,技术价值要借助技术应用和产品才能发挥出来,这比单纯的技术学习要有意思得多,希望以上能应用到你具体的工作中。 


本文作者介绍:张辉清,曾任中青易游CTO、同程交通创新技术负责人、古大集团首席架构师、携程架构师等职务。带领过30~200人的技术团队,将其研发能力提高1~2个档次。现阶段主要关注技术创新、技术创业、中小研发团队的能力提升。


# 本文内容节选自《小团队构建大网站 - 中小研发团队架构实践》一书。若对该书该兴趣,可通过点击“阅读原文”,查看购买链接。



----------  END  ----------


本公众号编辑部维护读者群之架构群,邀请了坐馆老司机曲健、伟山、安晓辉、史海峰嘉宾等参与交流。加群请在公众号回复:架构群。


 往期推荐:


技术琐话 


以分布式设计、架构、体系思想为基础,兼论研发相关的点点滴滴,不限于代码、质量体系和研发管理。


    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存