如何使用R语言解决可恶的脏数据
在数据分析过程中最头疼的应该是如何应付脏数据,脏数据的存在将会对后期的建模、挖掘等工作造成严重的错误,所以必须谨慎的处理那些脏数据。
脏数据的存在形式主要有如下几种情况:
1)缺失值
2)异常值
3)数据的不一致性
下面就跟大家侃侃如何处理这些脏数据。
一、缺失值
缺失值,顾名思义就是一种数据的遗漏,根据CRM中常见的缺失值做一个汇总:
1)会员信息缺失,如身份证号、手机号、性别、年龄等
2)消费数据缺失,如消费次数、消费金额、客单价,卡余等
3)产品信息缺失,如批次、价格、折扣、所属类别等
根据实际的业务需求不同,可以对缺失值采用不同的处理办法,如需要给会员推送短信,而某些会员恰好手机号不存在,可以考虑剔除;如性别不知道,可以使用众数替代;如年龄未知,可以考虑用均值替换。当然还有其他处理缺失值的办法,如多重插补法。下面以一个简单的例子,来说明缺失值的处理。
#模拟一批含缺失值的数据集
set.seed(1234)
Tel <- 13812341000:13812341999
Sex <- sample(c('F','M'), size = 1000, replace = T, prob = c(0.4,0.6))
Age <- round(runif(n = 1000, min = 18, max = 60))
Freq <- round(runif(n = 1000, min = 1, max = 368))
Amount <- rnorm(n = 1000, mean = 134, sd = 10)
ATV <- runif(n = 1000, min = 23, max = 138)
df <- data.frame(Tel = Tel, Sex = Sex, Age = Age, Freq = Freq, Amount = Amount, ATV = ATV)
上面的数据框是一个不含有任何缺失值的数据集,现在我想随机产生100个缺失值,具体操作如下:
#查看原始数据集的概要
summary(df)
set.seed(1234)
i <- sample(1:6, size = 100, replace = T)
j <- sample(1:1000, size = 100)
#将下标组合成矩阵
index <- as.matrix(data.frame(j,i))
#将原始数据框转换为矩阵
df <- as.matrix(df)
#将随机参数的行列赋值为NA
df[index] <- NA
#重新将矩阵转换为数据框
df2 <- as.data.frame(df)
#变换变量类型
df2$Age <- as.integer(df2$Age)
df2$Freq <- as.integer(df2$Freq)
df2$Amount <- as.numeric(df2$Amount)
df2$ATV <- as.numeric(df2$ATV)
#再一次查看赋予缺失值后的数据框概要
summary(df2)
很明显这里已经随机产生100个缺失值了,下面看看这100个缺失值的分布情况。我们使用VIM包中的aggr()函数绘制缺失值的分布情况:
library(VIM)
aggr(df2, prop = FALSE, numbers = TRUE)
图中显示:Tel变量有21个缺失,Sex变量有28个缺失,Age变量有6个缺失,Freq变量有20个缺失,Amount变量有13个缺失,ATV有12个缺失。
为了演示,下面对Tel变量缺失的观测进行剔除;对Sex变量的缺失值用众数替换;Age变量用平均值替换;Freq变量、Amount变量和ATV变量用多重插补法填充。
#剔除Tel变量的缺失观测
df3 <- df2[is.na(df2$Tel)==FALSE,]
#分别用众数和均值替换性别和年龄
#性别的众数
Sex_mode <- names(which.max(table(df3$Sex)))
#年龄的均值
Age_mean <- mean(df3$Age, na.rm = TRUE)
library(tidyr)
df3 <- replace_na(df3,replace = list(Sex = Sex_mode, Age = Age_mean))
summary(df3)
这个时候,Tel变量、Sex变量和Age变量已不存在缺失值,下面对Freq变量、Amount变量和ATV变量使用多重插补法。
可通过mice包实现多重插补法,该包可以对数值型数据和因子型数据进行插补。对于数值型数据,默认使用随机回归添补法(pmm);对二元因子数据,默认使用Logistic回归添补法(logreg);对多元因子数据,默认使用分类回归添补法(polyreg)。其他插补法,可通过?mice查看相关文档。
library(mice)
#对缺失值部分,进行5次的多重插补,这里默认使用随机回归添补法(pmm)
imp <- mice(data = df3, m = 5)
#查看一下插补的结果
imp$imp
#计算5重插补值的均值
Freq_imp <- apply(imp$imp$Freq,1,mean)
Amount_imp <- apply(imp$imp$Amount,1,mean)
ATV_imp <- apply(imp$imp$ATV,1,mean)
#并用该均值替换原来的缺失值
df3$Freq[is.na(df3$Freq)] <- Freq_imp
df3$Amount[is.na(df3$Amount)] <- Amount_imp
df3$ATV[is.na(df3$ATV)] <- ATV_imp
#再次查看填补完缺失值后的数据集和原始数据集概况
summary(df3)
summary(df2)
通过不同的方法将缺失值数据进行处理,从上图可知,通过填补后,数据的概概览情况基本与原始数据相近,说明填补过程中,基本保持了数据的总体特征。
二、异常值
异常值也是非常痛恨的一类脏数据,异常值往往会拉高或拉低数据的整体情况,为克服异常值的影响,我们需要对异常值进行处理。首先,我们需要识别出哪些值是异常值或离群点,其次如何处理这些异常值。下面仍然以案例的形式,给大家讲讲异常值的处理:
1、识别异常值
一般通过绘制盒形图来查看哪些点是离群点,而离群点的判断标准是四分位数与四分位距为基础。即离群点超过上四分位数的1.5倍四分位距或低于下四分位数的1.5倍四分位距。
例子:
#随机产生一组数据
set.seed(1234)
value <- c(rnorm(100, mean = 10, sd = 3), runif(20, min = 0.01, max = 30), rf(30, df1 = 5, df2 = 20))
#绘制箱线图,并用红色的方块标注出异常值
library(ggplot2)
ggplot(data = NULL, mapping = aes(x = '', y = value)) + geom_boxplot(outlier.colour = 'red', outlier.shape = 15, width = 1.2)
图中可知,有一部分数据落在上四分位数的1.5倍四分位距之上,即异常值,下面通过编程,将异常值找出来:
#计算下四分位数、上四分位数和四分位距
QL <- quantile(value, probs = 0.25)
QU <- quantile(value, probs = 0.75)
QU_QL <- QU-QL
QL;QU;QU_QL
2、找出异常点
which(value > QU + 1.5*QU_QL)
value[which(value > QU + 1.5*QU_QL)]
结果显示,分别是第104、106、110、114、116、118和120这6个点。下面就要处理这些离群点,一般有两种方法,即剔除或替补。剔除很简单,但有时剔除也会给后面的分析带来错误的结果,接下来就讲讲替补。
#用离异常点最近的点替换
test01 <- value
out_imp01 <- max(test01[which(test01 <= QU + 1.5*QU_QL)])
test01[which(test01 > QU + 1.5*QU_QL)] <- out_imp01
#用上四分位数的1.5倍四分位距或下四分位数的1.5倍四分位距替换
test02 <- value
out_imp02 <- QU + 1.5*QU_QL
test02[which(test02 > QU + 1.5*QU_QL)] <- out_imp02
#对比替换前后的数据概览
summary(value)
summary(test01)
summary(test02)
三、数据的不一致性
数据的不一致性一般是由于不同的数据源导致,如有些数据源的数据单位是斤,而有些数据源的数据单位为公斤;如有些数据源的数据单位是米,而有些数据源的数据单位为厘米;如两个数据源的数据没有同时更新等。对于这种不一致性可以通过数据变换轻松得到一致的数据,只有数据源的数据一致了,才可以进行统计分析或数据挖掘。由于这类问题的处理比较简单,这里就不累述具体的处理办法了。