查看原文
其他

机器学习(27)【降维】之主成分分析(PCA)详解

2017-11-23 昱良 机器学习算法与Python学习

微信公众号

关键字全网搜索最新排名

【机器学习算法】:排名第一

【机器学习】:排名第一

【Python】:排名第三

【算法】:排名第四

前言

主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一。在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用。一般我们提到降维最容易想到的算法就是PCA,下面我们就对PCA的原理做一个总结。

PCA基本思想

PCA顾名思义,就是找出数据里最主要的方面,用数据里最主要的方面来代替原始数据。具体的,假如我们的数据集是n维的,共有m个数据(x(1),x(2),...,x(m))。希望将这m个数据的维度从n维降到n'维,希望这m个n'维的数据集尽可能的代表原始数据集。我们知道数据从n维降到n'维肯定会有损失,但是我们希望损失尽可能的小。那么如何让这n'维的数据尽可能表示原来的数据呢?

先看看最简单的情况,也就是n=2,n'=1,也就是将数据从二维降维到一维。数据如下图。我们希望找到某一个维度方向,它可以代表这两个维度的数据。图中列了两个向量方向,u1和u2,那么哪个向量可以更好的代表原始数据集呢?从直观上也可以看出,u1比u2好。

为什么u1比u2好呢?可以有两种解释,第一种解释是样本点到这个直线的距离足够近,第二种解释是样本点在这个直线上的投影能尽可能的分开。假如我们把n'从1维推广到任意维,则我们的希望降维的标准为:样本点到这个超平面的距离足够近,或者说样本点在这个超平面上的投影能尽可能的分开。

基于上面的两种标准,我们可以得到PCA的两种等价推导。


基于最近重构性


基于最大可分性


PCA算法流程

从上面两节我们可以看出,求样本x(i)的n'维的主成分其实就是求样本集的协方差矩阵XXT的前n'个特征值对应特征向量矩阵W,然后对于每个样本x(i),做如下变换z(i)=WTx(i),即达到降维的PCA目的。

算法流程

输入:n维样本集D=(x(1),x(2),...,x(m)),要降维到的维数n'.

输出:降维后的样本集D"

1)   对所有的样本进行中心化:

2)计算样本的协方差矩阵 

3)对矩阵XXT进行特征值分解

4 ) 取出最大的n'个特征值对应的特征向量(w1,w2,...,wn′), 将所有的特征向量标准化后,组成特征向量矩阵W。

5)对样本集中的每一个样本x(i),转化为新的样本

6)降维后的样本集D"

有时候,我们不指定降维后的n'的值,而是换种方式,指定一个降维到的主成分比重阈值t。这个阈值t在(0,1]之间。假如我们的n个特征值为λ1≥λ2≥...≥λn,则n'可以通过下式得到:


PCA实例

下面举一个简单的例子,说明PCA的过程。

假设我们的数据集有10个二维数据(2.5,2.4), (0.5,0.7), (2.2,2.9), (1.9,2.2), (3.1,3.0), (2.3, 2.7), (2, 1.6), (1, 1.1), (1.5, 1.6), (1.1, 0.9),需要用PCA降到1维特征。


首先我们对样本中心化,这里样本的均值为(1.81, 1.91),所有的样本减去这个均值后,即中心化后的数据集为(0.69, 0.49), (-1.31, -1.21), (0.39, 0.99), (0.09, 0.29), (1.29, 1.09), (0.49, 0.79), (0.19, -0.31), (-0.81, -0.81), (-0.31, -0.31), (-0.71, -1.01)。


现在我们开始求样本的协方差矩阵,由于我们是二维的,则协方差矩阵为:

对于我们的数据,求出协方差矩阵为:

求出特征值为(0.490833989, 1.28402771),对应的特征向量分别为:(0.735178656,0.677873399)T(−0.677873399,−0.735178656)T,由于最大的k=1个特征值为1.28402771,对于的k=1个特征向量为(−0.677873399,−0.735178656)T. 则我们的W=(−0.677873399,−0.735178656)T


我们对所有的数据集进行投影z(i)=WTx(i),得到PCA降维后的10个一维数据集为:(-0.827970186,1.77758033, -0.992197494, -0.274210416, -1.67580142, -0.912949103, 0.0991094375, 1.14457216,  0.438046137, 1.22382056)


PCA算法总结

作为一个非监督学习的降维方法,它只需要特征值分解,就可以对数据进行压缩,去噪。因此在实际场景应用很广泛。为了克服PCA的一些缺点,出现了很多PCA的变种,比如为解决非线性降维的KPCA,还有解决内存限制的增量PCA方法Incremental PCA,以及解决稀疏数据降维的PCA方法Sparse PCA等。


优点

1)仅仅需要以方差衡量信息量,不受数据集以外的因素影响。

 

2)各主成分之间正交,可消除原始数据成分间的相互影响的因素。


3)计算方法简单,主要运算是特征值分解,易于实现。


缺点

1)主成分各个特征维度的含义具有一定的模糊性,不如原始样本特征的解释性强。


2)方差小的非主成分也可能含有对样本差异的重要信息,因降维丢弃可能对后续数据处理有影响。


欢迎分享给他人让更多的人受益

参考:

  1. 周志华《机器学习》

  2. Neural Networks and Deep Learning by By Michael Nielsen

  3. 博客园

    http://www.cnblogs.com/pinard/p/6489633.html

  4. 李航《统计学习方法》

  5. Deep Learning, book by Ian Goodfellow, Yoshua Bengio, and Aaron Courville

加我微信:guodongwe1991,备注姓名-单位-研究方向(加入微信机器学习交流1群)

招募 志愿者

广告、商业合作

请加QQ:357062955@qq.com

喜欢,别忘关注~

帮助你在AI领域更好的发展,期待与你相遇!


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存